Advertisement

Cluster Computing

, Volume 22, Supplement 3, pp 7611–7627 | Cite as

A new local and nonlocal total variation regularization model for image denoising

  • Mingju ChenEmail author
  • Hua Zhang
  • Guojun Lin
  • Qiang Han
Article
  • 326 Downloads

Abstract

The total variation (TV) method for image deblurring is effective for sharpening image details in noisy images although this method tends to over-smooth the image details and inevitably results in staircase effects in smooth areas of the image. The nonlocal total variation (NLTV) method overcomes these drawbacks and retains fine details. However, it is not suitable for detecting similar patches and usually blurs edges in the image. Considering that the TV and NLTV are complementary, we propose a new local and nonlocal total variation (LNLTV) model. In this model, we first decompose the original image into a cartoon component and a detail component, then respectively apply the TV and NLTV to both components. To optimize the hybrid model, the Bregman iteration-based multivariable minimization (BIMM) method and the fast iteration-based multivariable minimization (FIMM) method are respectively employed to minimize the LNLTV energy function. The experimental results clearly demonstrate that the LNLTV model has better performance than some other state-of-the-art models with regard to evaluation indices and visual quality, and the FIMM method has a faster convergence rate and requires less time than the BIMM method.

Keywords

Image denoising Total variation Nonlocal total variation Multi-variable minimization 

Notes

Acknowledgements

This research was supported by the Open Fund Project of the Artificial Intelligence Key Laboratory of Sichuan Province (Grant Nos. 2015RZY01, 2016RYY02), the Project of Sichuan Provincial Department of Education (Grant Nos. 14ZB0211, 17ZB0302), and the Scientific Research Project of Sichuan University of Science and Engineering (Grant No. 2015RC16).

References

  1. 1.
    Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Prob. 10(6), 1217–1229 (1997)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aubin, J.P., Vinter, R.B.: Convex analysis and optimization. Tsinghua University Press, Beijing (2006)Google Scholar
  3. 3.
    Tikhonov, A.N., Arsenin, V.Y.: Solution of ill-posed problems. Math. Comput. 32(144), 491 (1977)Google Scholar
  4. 4.
    Marquina, A.: Nonlinear Inverse scale space methods for total variation blind deconvolution. SIAM J. Imaging Sci. 2(1), 64–83 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chan, T.F., Shen, J.: Mathematical models for local nontexture inpaintings. SIAM J. Appl. Math. 62(3), 1019–1043 (2002)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Marquina, A., Osher, S.J.: Image super-resolution by TV-regularization and Bregman iteration. J. Sci. Comput. 37(3), 367–382 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Marquina, A., Osher, S.: Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal. In: Proceedings of Scale-Space Theories in Computer Vision, Second International Conference, Scale-Space’99, DBLP, Corfu, Greece, September 26–27, pp. 429–434 (1999)Google Scholar
  9. 9.
    Fu, S., Zhang, C.: Adaptive non-convex total variation regularization for image restoration. Electron. Lett. 46(13), 907–908 (2010)CrossRefGoogle Scholar
  10. 10.
    Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. SIAM J. Multiscale Model. Simul. 4(2), 490–530 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kindermann, S., Osher, S., Jones, P.W.: Deblurring and denoising of images by nonlocal functionals. SIAM J. Multiscale Model. Simul. 4(4), 1091–1115 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. SIAM J. Multiscale Model. Simul. 7(3), 1005–1028 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Zhang, X., Burger, M., Bresson, X., et al.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci. 3(3), 253–276 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Liu, X., Huang, L.: Original Article: A new nonlocal total variation regularization algorithm for image denoising. Math. Comput. Simul. 97(1), 224–233 (2014)CrossRefGoogle Scholar
  16. 16.
    Wang, S., Liu, Z.W., Dong, W.S., et al.: Total variation based image deblurring with nonlocal self-similarity constraint. Electron. Lett. 47(16), 916–918 (2011)CrossRefGoogle Scholar
  17. 17.
    Hao, W., Li, J.: Alternating total variation and non-local total variation for fast compressed sensing magnetic resonance imaging. Electron. Lett. 51(22), 1740–1742 (2015)CrossRefGoogle Scholar
  18. 18.
    Tang, S., Gong, W., Li, W., et al.: Non-blind image deblurring method by local and nonlocal total variation models. Signal Process. 94(1), 339–349 (2014)CrossRefGoogle Scholar
  19. 19.
    Gilboa, G.: A total variation spectral framework for scale and texture analysis. SIAM J. Imaging Sci. 7(4), 1937–1961 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Zhang, H., Yan, B., Wang, L., et al.: Sparse-view image reconstruction with nonlocal total variation. In: IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. 1–3 (2014)Google Scholar
  21. 21.
    Osher, S., Burger, M., Goldfarb, D., et al.: An iterative regularization method for total variation-based image restoration. SIAM J. Multiscale Model. Simul. 4(2), 460–489 (2005)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. SIAM J. Multiscale Model. Simul. 4(4), 1168–1200 (2006)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Li, W., Li, Q., Gong, W., et al.: Total variation blind deconvolution employing split Bregman iteration. J. Vis. Commun. Image Represent. 23(3), 409–417 (2012)CrossRefGoogle Scholar
  24. 24.
    Jia, R.Q., Zhao, H.: A fast algorithm for the total variation model of image denoising. Adv. Comput. Math. 33(2), 231–241 (2010)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Xie, Y., Zhang, W., Tao, D., et al.: Removing turbulence effect via hybrid total variation and deformation-guided kernel regression. IEEE Trans. Image Process. 25(10), 4943–4958 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Jia, R.Q., Zhao, H., Zhao, W.: Convergence analysis of the Bregman method for the variational model of image denoising. Appl. Comput. Harmon. Anal. 27(3), 367–379 (2009)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Cai, J.F., Osher, S., Shen, Z.: Convergence of the linearized Bregman iteration for ℓ1-norm minimization. Math. Comput. 78(268), 2127–2136 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mingju Chen
    • 1
    • 2
    Email author
  • Hua Zhang
    • 1
  • Guojun Lin
    • 2
  • Qiang Han
    • 1
    • 2
  1. 1.Robot Technology Used for Special Environment Key Laboratory of Sichuan ProvinceSouthwest University of Science and TechnologyMianyangChina
  2. 2.School of Automation & Information EngineeringSichuan University of Science & EngineeringZigongChina

Personalised recommendations