Advertisement

Cluster Computing

, Volume 22, Supplement 6, pp 14401–14410 | Cite as

Research on a new type of electromagnetic transmitter based on PWM technology

  • Jialin ZhangEmail author
  • Yiming Zhang
  • Xinyue Feng
  • Junxia Gao
Article
  • 80 Downloads

Abstract

An electromagnetic transmitter transmits electromagnetic waves with variable frequencies to the ground to obtain underground structure information and the distribution of mineral resources. In order to improve the power factor and reduce the volume and weight of the transmitter, a novel transmitter topology with pulse width modulation (PWM) rectifier is designed. Similar with the flux-oriented control in the motor speed regulation system, this paper provides flux-oriented control for a permanent magnet synchronous generator PWM rectifier. The mathematical model of the generator rectifier is established under the rotating coordinate system. Then, a novel decoupling control strategy without the exact value of the generator stator inductance is proposed to regulate the active current and the reactive current, and an outer voltage linear control strategy with the control amount of the square of the voltage is proposed to regulate the output voltage. Simulation and experimental results demonstrate the effectiveness of the system.

Keywords

Electromagnetic transmitter PMSG PWM rectifier Novel dual-loop control 

Notes

Acknowledgements

This study was financially supported by National Key R&D Plan of China, Grant No. 2016YFC0303103.

References

  1. 1.
    Xue, K.C., Wang, S., Lin, J., Li, G., Zhou, F.D.: Loss analysis and air-cooled design for a cascaded electrical source transmitter. J. Power Electron. 12(5), 530–543 (2015)CrossRefGoogle Scholar
  2. 2.
    Zhdanov, M.S.: Electromagnetic geophysics: notes from the past and the road ahead. Geophysics 75(5), 75A49–75A66 (2010)CrossRefGoogle Scholar
  3. 3.
    An, Z.G., Di, Q.Y., Fu, C.M., Xu, C., Chen, B.: Geophysical evidence through a CSAMT survey of the deep geological structure at a potential radioactive waste site at Beishan, Gansu, China. J. Environ. Eng. Geophys. 18(1), 43–54 (2007)CrossRefGoogle Scholar
  4. 4.
    Jiang, Q. Y.: Study on the key technology of wide field electromagnetic sounding instrument. Ph.D. Thesis, Central South University, Changsha, China (2010)Google Scholar
  5. 5.
    Arrillaga, J., Watson, N.: Power system harmonies, Chap. 2. Wiley, Hoboken (2003)CrossRefGoogle Scholar
  6. 6.
    Yu, F., Zhang, Y.M.: Modeling and control method for high-power electromagnetic transmitter power supplies. J. Power Electron. 13(4), 679–691 (2013)CrossRefGoogle Scholar
  7. 7.
    Zhu, X. Z.: Based on the soft switch technology research and implementation of high-power electromagnetic transmitter. Master Thesis, Beijing University of Technology, Beijing, China (2016)Google Scholar
  8. 8.
    ZONGE GGT-30 Geophysical Transmitter Maintenance and Repair Manual. Zonge Engineering & Research Organization, Inc. (2001)Google Scholar
  9. 9.
    Yamashita, M., Fox, L.: Introduction of V8 wireless multifunction, multichannel geophysical data acquisition system. In: Proceedings of the SEGJ Conference, pp. 219–222, May 2005Google Scholar
  10. 10.
    Zhen, Q.H., Di, Q.Y., Liu, H.B.: Key technology study on CSAMT transmitter with excitation control. Chin. J. Geophys. 56(11), 3751–3760 (2013)Google Scholar
  11. 11.
    Singh, B., Singh, B.N., Chandra, A., Al-Haddad, K., Pandey, A., Kothari, D.P.: A review of three-phase improved power quality AC-DC converters. IEEE Trans. Ind. Electron. 51(3), 641–660 (2005)CrossRefGoogle Scholar
  12. 12.
    Ohnishi, T.: Three phase PWM converter/inverter by means of instantaneous active and reactive power control. In: Industrial Electronics, Control and Instrumentation, 1991. Proceedings. IECON’91, 1991 International Conference on. IEEE, pp. 819–824, November 1991Google Scholar
  13. 13.
    Malinowski, M., Kazmierkowski, M.P., Hansen, S., Blaabjerg, S.F., Marques, G.D.: Virtual-flux-based direct power control of three-phase PWM rectifiers. IEEE Trans. Ind. Appl 37(4), 1019–1027 (2001)CrossRefGoogle Scholar
  14. 14.
    Bouafia, A., Gaubert, J.P., Krim, F.: Predictive direct power control of three-phase pulsewidth modulation (PWM) rectifier using space-vector modulation (SVM). IEEE Trans. Power Electron. 25(1), 228–236 (2010)CrossRefGoogle Scholar
  15. 15.
    Blasko, V., Kaura, V.: A new mathematical model and control of a three-phase AC-DC voltage source converter. IEEE Trans. Power Electron. 12(1), 116–123 (1997)CrossRefGoogle Scholar
  16. 16.
    Briz, F., Degner, M.W., Lorenz, R.D.: Analysis and design of current regulators using complex vectors. IEEE Trans. Ind. Appl. 36(3), 817–825 (2000)CrossRefGoogle Scholar
  17. 17.
    Chen, Y.J., Zhong, Y.P.: Study on the current control for voltage-source PWM rectifier using complex vectors. Proc Chin Soc Electr. Eng. 26(2), 143–148 (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jialin Zhang
    • 1
    Email author
  • Yiming Zhang
    • 1
  • Xinyue Feng
    • 1
  • Junxia Gao
    • 1
  1. 1.Faculty of Information TechnologyBeijing University of TechnologyBeijingChina

Personalised recommendations