Cluster Computing

, Volume 22, Supplement 6, pp 13387–13395 | Cite as

Design and development of high performance MOS current mode logic (MCML) processor for fast and power efficient computing

  • K. P. Sai PradeepEmail author
  • S. Suresh Kumar


Power dissipation and delay product have emerged to be crucial issue, which prove to decrease the performance of microprocessor. The MOS current mode logic (MCML) is an evolving logic family that is attracting interest owing to its high speed operation, reliable performance in comparison to the CMOS logic family. However, the MCML suffers from constant static power dissipation, which, if left unmanaged, would result in an inordinate energy requirement in large scale ICs. In order to resolve this challenge, the newly introduced system designed a modified MOS current mode logic (modified MCML) that has remarkable characteristics of lesser power dissipation, better switching frequency and greater processing speed. With the aim of achieving low power dissipation, the dynamic MOS current mode logic (dynamic MCML) is proposed. Dynamic MCML circuits integrate the benefits of MCML circuits with those that of the dynamic logic families for achieving great performance using a low-supply voltage along with low-power dissipation. The results obtained from simulation show that the newly introduced design model of dynamic MCML yields greater power conservation and higher processing speed in comparison with conventional CMOS technology, MCML and modified MCML with regard to power dissipation and power delay product.


MCML Power dissipation Power delay product Dynamic MCML and CMOS 


  1. 1.
    Jeon, H., Kim, Y.B., Choi, M.: Standby leakage power reduction technique for nanoscale CMOS VLSI systems. IEEE Trans. Instrum. Meas. 59(5), 1127–1133 (2010)CrossRefGoogle Scholar
  2. 2.
    Abdulkarim, O. M., Shams, M.: A symmetric MOS current-mode logic universal gate for high speed applications. In: Proceedings of the 17th ACM Great Lakes symposium on VLSI, pp. 212–215. ACM (2007)Google Scholar
  3. 3.
    Salman, E., Friedman, E.: High Performance Integrated Circuit Design. McGraw Hill Professional, New York (2012)Google Scholar
  4. 4.
    Seabaugh, A.C., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 2095–2110 (2010)CrossRefGoogle Scholar
  5. 5.
    Savidis, I., Kose, S., Friedman, E.G.: Power noise in TSV-based 3-D integrated circuits. IEEE J. Solid-State Circuits 48(2), 587–597 (2013)CrossRefGoogle Scholar
  6. 6.
    Gupta, K., Pandey, N., Gupta, M.: Analysis and design of MOS current mode logic exclusive-OR gate using triple-tail cells. Microelectron. J. 44(6), 561–567 (2013)CrossRefGoogle Scholar
  7. 7.
    Hassan, H., Anis, M., Elmasry, M.: MOS current mode circuits: analysis, design, and variability. IEEE Trans. VLSI Syst. 13(8), 885–898 (2005)CrossRefGoogle Scholar
  8. 8.
    Cevrero, A., Regazzoni, F., Schwander, M., Badel, S., Ienne, P., Leblebici, Y.: Power-gated mos current mode logic (pg-mcml): a power aware dpa-resistant standard cell library. In: Design Automation Conference (DAC), 2011 48th ACM/EDAC/IEEE, pp. 1014–1019. IEEE (2011)Google Scholar
  9. 9.
    Nonis, R., Palumbo, E., Palestri, P., Selmi, L.: A design methodology for MOS current-mode logic frequency dividers. IEEE Trans. Circuits Syst. I 54(2), 245–254 (2007)CrossRefGoogle Scholar
  10. 10.
    Wu, Y., Hu, J.: Low-voltage MOS current mode logic for low-power and high speed applications. Inf. Technol. J. 10(12), 2470–2475 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Nonis, R., Palumbo, E., Palestri, P., Selmi, L.: A design methodology for MOS current-mode logic frequency dividers. IEEE Trans. Circuits Syst. I 54(2), 245–254 (2007)CrossRefGoogle Scholar
  12. 12.
    Cannillo, F., Toumazou, C., Lande, T.S.: Nanopower subthreshold MCML in submicrometer CMOS technology. IEEE Trans. Circuits Syst. I 56(8), 1598–1611 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Alioto, M., Palumbo, G.: Feature–power-aware design techniques for nanometer MOS current-mode logic gates: a design framework. IEEE Circuits Syst. Mag. 6(4), 42–61 (2006)CrossRefGoogle Scholar
  14. 14.
    Hassoune, I., Macé, F., Flandre, D., Legat, J.D.: Low-swing current mode logic (LSCML): a new logic style for secure and robust smart cards against power analysis attacks. Microelectron. J. 37(9), 997–1006 (2006)CrossRefGoogle Scholar
  15. 15.
    Hu, J., Ni, H., Xia, Y.: High-speed low-power MCML nanometer circuits with near-threshold computing. JCP 8(1), 129–135 (2013)Google Scholar
  16. 16.
    Saha, A., Pal, D., Chandra, M., Goswami, M.K.: Novel high speed MCML 8-bit by 8-bit multiplier. In: Devices and Communications (ICDeCom), 2011 International Conference on, pp. 1–5. IEEE (2011)Google Scholar
  17. 17.
    Regazzoni, F., Eisenbarth, T., Poschmann, A., Großschädl, J., Gurkaynak, F., Macchetti, M., Ienne, P. Evaluating resistance of MCML technology to power analysis attacks using a simulation-based methodology. In: Transactions on Computational Science IV, pp. 230–243 (2009)CrossRefGoogle Scholar
  18. 18.
    Badel, S., Leblebici, Y.: Breaking the power-delay tradeoff: design of low-power high-speed MOS current-mode logic circuits operating with reduced supply voltage. In: Circuits and Systems, 2007. IEEE International Symposium on ISCAS, pp. 1871–1874 (2007)Google Scholar
  19. 19.
    Kim, T., Jeong, Y., Yang, K.: Low-power high-speed performance of current-mode logic D flip-flop topology using negative-differential-resistance devices. IET Circuits Devices Syst. 2(2), 281–287 (2008)CrossRefGoogle Scholar
  20. 20.
    Cannillo, F., Toumazou, C., Lande, T.S.: Bulk-drain connected load for subthreshold MOS current-mode logic. Electron. Lett. 43(12), 662–664 (2007)CrossRefGoogle Scholar
  21. 21.
    Bai, Y., Song, Y., Bojnordi, M.N., Shapiro, A., Friedman, E.G., Ipek, E.: Back to the future: current-mode processor in the era of deeply scaled CMOS. IEEE Trans. VLSI Syst. 24(4), 1266–1279 (2016)CrossRefGoogle Scholar
  22. 22.
    Shapiro, A., Friedman, E.G.: MOS current mode logic near threshold circuits. J. Low Power Electron. Appl. 4(2), 138–152 (2014)CrossRefGoogle Scholar
  23. 23.
    Lin, J.F., Hwang, Y.T., Sheu, M.H., Ho, C.C.: A novel high-speed and energy efficient 10-transistor full adder design. IEEE Trans. Circuits Syst. I 54(5), 1050–1059 (2007)CrossRefGoogle Scholar
  24. 24.
    Sun, Y., Kursun, V.: Carbon nanotubes blowing new life into NP dynamic CMOS circuits. IEEE Trans. Circuits Syst. 61(2), 420–428 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dr. N.G.P. Institute of TechnologyCoimbatoreIndia

Personalised recommendations