Advertisement

Cluster Computing

, Volume 22, Supplement 6, pp 13369–13380 | Cite as

Brain tumor detection and segmentation using a wrapper based genetic algorithm for optimized feature set

  • S. U. AswathyEmail author
  • G. Glan Devadhas
  • S. S. Kumar
Article
  • 58 Downloads

Abstract

The work here intends to develop an algorithm for optimizing the available feature set for identifying tumor from brain MRI images. A set of features are selected based on texture features. From the large set of features relevant features would be selected using wrapper approach. Further, an optimized subset of the relevant features is generated with the help of Genetic Algorithm. The machine learning with support vector machine algorithm is used for detection and segmentation of tumors in the brain MRI image acquired. The superiority of the algorithm is established by comparing it with the state of the art algorithms such as level set method and fuzzy based methods. The authors are using performance measurement tools including manual segmentation and volume based tools for validating the claim.

Keywords

Segmentation Genetic algorithm Wrapper method Support vector machine 

References

  1. 1.
    Gonzalez, R.A., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice Hall, Upper Saddle River (2002)Google Scholar
  2. 2.
    Dubey, R.B., Hanmandlu, M., Vasikarla, S.: Evaluation of three methods for mri brain tumor segmentation. In: 2011 Eighth International Conference on Information Technology: New Generations, IEEE (2011)Google Scholar
  3. 3.
    Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. In: Proceedings of the IEEE transaction on Medical Images (2001)Google Scholar
  4. 4.
    Tolba, M.F., Mostafa, M.G., Gharib, T.F., Salem, M.A.: MR-brain image segmentation using gaussian multi resolution analysis and the EM algorithm. ICEIS 2, 165–170 (2003)Google Scholar
  5. 5.
    Karnan, M., Logeswari, T.: An improved implementation of braintumor detection using soft computing. Int. J. Comput. Netw. Secur. 2(1), 6–10 (2010)Google Scholar
  6. 6.
    Kavitha, A.R., Chellamuthu, C.: Detection of brain tumour from MRI image using modified region growing and neural network. Imaging Sci. J. 61(7), 556–567 (2012)CrossRefGoogle Scholar
  7. 7.
    Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning, 3rd edn, pp. 60–68. Addison Wesley Longman Pvt. Ltd., Boston (2000)Google Scholar
  8. 8.
    Sieno, D.D.: Adding a Conscience to Competitive Learning. In: Proceeding of IEEE the Second International Conference on Neural networks (ICNN88), pp. 117–124 (1988)Google Scholar
  9. 9.
    Sieno, D.D: Adding a Conscience to Competitive Learning. In: Proceeding of IEEE the Second International Conference on Neural networks (ICNN88), pp. 117–124 (1988)Google Scholar
  10. 10.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 3rd edn, pp. 60–68. Addison Wesley Longman Pvt. Ltd., Boston (2000)Google Scholar
  11. 11.
    Jiang, L., Yang, W. (2003) A modified fuzzy C-means algorithm for segmentation of magnetic resonance images. In: Proc. VIIth Digital Image Computing: Techniques and Applications, Sydney (2003)Google Scholar
  12. 12.
    Farmer, M.E., Jain, A.K.: A wrapper-based approach toimage segmentation and classification. IEEE Trans. J. Mag. 14(12), 2060–2072 (2005)Google Scholar
  13. 13.
    Selvathi, D., Anitha, J.: Effective fuzzy clusteringalgorithm for abnormal MR brain image segmentation. In: International/Advance Computing Conference (IACC2009), IEEE (2009)Google Scholar
  14. 14.
    Kaur, M., Banga, V.K.: Thresholding and level set based brain tumor detection using bounding box as seed. Int. J. Eng. Res. Technol. 4, 2503–2507 (2013)Google Scholar
  15. 15.
    Wu, J., Ye, F., Ma, J.L., Sun, X.P., Xu, J., Cui, Z.M.: The segmentation and visualization of human organs based on adaptive region growing method. In: IEEE 8th International Conference on Computer and Information Technology Workshops 978-0-7695-3242-4/08, IEEE (2008)Google Scholar
  16. 16.
    Eschrich, S., Ke, J., Hall, L.O.: Fast accurate fuzzy clustering through data reduction. IEEE Trans. Fuzzy Syst. 11(2), 262–270 (2003)CrossRefGoogle Scholar
  17. 17.
    Menze, B.H., Van Leemput, K., Lashkari, D., Weber, M.-A., Ayache, N., Golland, P.: Segmenting glioma in multi-modal images using a generative model for brain lesion segmentation. In: Proc. MICCAIBRATS, pp. 1–8 (2012)Google Scholar
  18. 18.
    Zikic, D. et al.: Context-sensitive classification forests for segmentation of brain tumor tissues. In: Proc. MICCAI-BRATS, pp. 22–30 (2012)Google Scholar
  19. 19.
    Bauer, S., et al.: Segmentation of brain tumor images based on integrated hierarchical classification. In: MICCAI BraTS Workshop. Nice: Miccai Society (2012)Google Scholar
  20. 20.
    Aswathy, S.U., et al.: Quick detection of brain tumor using a combination of EM and level set method. Indian J. Sci. Technol. 8(34), 74–82 (2015).  https://doi.org/10.17485/ijst/2015/v8i34/85361 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. U. Aswathy
    • 1
    Email author
  • G. Glan Devadhas
    • 2
  • S. S. Kumar
    • 3
  1. 1.Department of Computer ScienceNoorul Islam UniversityKanyakumariIndia
  2. 2.Electronics and InstrumentationVimal Jyothi Engineering CollegeKannurIndia
  3. 3.Electronics and InstrumentationNoorul Islam UniversityKanyakumariIndia

Personalised recommendations