Cluster Computing

, Volume 22, Supplement 6, pp 13351–13359 | Cite as

Map matching algorithm: curve simplification for Frechet distance computing and precise navigation on road network using RTKLIB

  • Kanta Prasad SharmaEmail author
  • Ramesh C. Pooniaa
  • Surendra Sunda


Map matching is the process which work for location measurement and also find out appropriate route for smooth traveling on the road network, but map matching accuracy fully depends on GPS trajectory data and electronic map of the road network. Unfortunately, GPS data is not accurate because, it’s through weak GPS signaling and low quality GPS devices. So, it is difficult to calculate accurate location of movements.This work provides, a map mapping algorithm for simplifying appropriate path, including curves on road network and also, we proposed Frechet distance computing algorithm with road Preliminaries for network simplification.


Map matching (MM) Frechet distance Spatial trajectories RINEX Simplified network RTK Curve circumference GPS 


  1. 1.
    Singh, S., Sharma, R.M.: Some aspects of coverage awareness in wireless sensor networks. Procedia Comput. Sci. 70, 160–165 (2015)CrossRefGoogle Scholar
  2. 2.
    Gupta, S.K., Poonia, R.C., Vijay, R.: A comparative study of mobile wireless networks. Orient. J. Comput. Sci. Technol. 4(2), 387–392 (2011)Google Scholar
  3. 3.
    Wang, L., Da Xu, L., Bi, Z., Xu, Y.: Data cleaning for RFID and WSN integration. IEEE Trans. Ind. Inf. 10(1), 408–418 (2014)CrossRefGoogle Scholar
  4. 4.
    Fang, S., Xu, L., Pei, H., Liu, Y., Liu, Z., Zhu, Y., et al.: An integrated approach to snowmelt flood forecasting in water resource management. IEEE Trans. Ind. Inf. 10(1), 548–558 (2014)CrossRefGoogle Scholar
  5. 5.
    Ding, Z., Güting, R.H.: Uncertainty management for network constrained moving objects. In: International Conference on Database and Expert Systems Applications, August 2004, pp. 411–421. Springer, Berlin (2004)Google Scholar
  6. 6.
    Xu, J., Guo, L., Ding, Z., Sun, X., Liu, C.: Traffic aware route planning in dynamic road networks. In: International Conference on Database Systems for Advanced Applications, April 2012, pp. 576–591. Springer, BerlinCrossRefGoogle Scholar
  7. 7.
    Liu, K., Deng, K., Ding, Z., Li, M., Zhou, X.: Moir/mt: monitoring large-scale road network traffic in real-time. Proc. VLDB Endow. 2(2), 1538–1541 (2009)CrossRefGoogle Scholar
  8. 8.
    Sharma, K.P., Poonia, R.C.: Review study of navigation systems for Indian Regional Navigation Satellite System (IRNSS). In: Soft Computing: Theories and Applications, pp. 735–742. Springer, Singapore (2018)Google Scholar
  9. 9.
    Lou, Y., Zhang, C., Zheng, Y., Xie, X., Wang, W., Huang, Y.: Map-matching for low-sampling-rate GPS trajectories. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, November 2009, pp. 352–361. ACM, New York (2009)Google Scholar
  10. 10.
    Quddus, M.A., Ochieng, W.Y., Noland, R.B.: Current map-matching algorithms for transport applications: state-of-the art and future research directions. Transp. Res. Part C 15(5), 312–328 (2007)CrossRefGoogle Scholar
  11. 11.
    Ding, Z., Deng, K.: Collecting and managing network-matched trajectories of moving objects in databases. In: International Conference on Database and Expert Systems Applications, August 2011, pp. 270–279. Springer, Berlin (2011)Google Scholar
  12. 12.
    Finogeev, A.G., Finogeev, A.A.: Information attacks and security in wireless sensor networks of industrial SCADA systems. J. Ind. Inf. Integr. 5, 6–16 (2017)Google Scholar
  13. 13.
    He, W., Yan, G., Da Xu, L.: Developing vehicular data cloud services in the IoT environment. IEEE Trans. Ind. Inf. 10(2), 1587–1595 (2014)CrossRefGoogle Scholar
  14. 14.
    Gupta, S., Poonia, R.C.: Comparative study of cluster and tree based data aggregation techniques in vehicular ad-hoc networks. In: 2016 5th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), September 2016, pp. 431–434Google Scholar
  15. 15.
    Jiménez, F., Aparicio, F., Estrada, G.: Measurement uncertainty determination and curve-fitting algorithms for development of accurate digital maps for advanced driver assistance systems. Transp. Res. Part C 17(3), 225–239 (2009)CrossRefGoogle Scholar
  16. 16.
    Wenk, C., Salas, R., Pfoser, D.: Addressing the need for map-matching speed: localizing global curve-matching algorithms. In: 18th International Conference on Scientific and Statistical Database Management (SSDBM’06), July 2006, pp. 379–388. IEEE, Vienna (2006)Google Scholar
  17. 17.
    Alt, H., Knauer, C., Wenk, C.: Comparison of distance measures for planar curves. Algorithmica 38(1), 45–58 (2004)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Quddus, M.A., Ochieng, W.Y., Zhao, L., Noland, R.B.: A general map matching algorithm for transport telematics applications. GPS Solut. 7(3), 157–167 (2003)CrossRefGoogle Scholar
  19. 19.
    Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. Int. J. Comput. Geom. Appl. 5(01–02), 75–91 (1995)CrossRefGoogle Scholar
  20. 20.
    Hummel, B.: Map matching for vehicle guidance. Dynamic and Mobile GIS: Investigating Space and Time, pp. 437–438. CRC Press, Boca Raton (2006)Google Scholar
  21. 21.
    Quddus, M.A.: High integrity map matching algorithms for advanced transport telematics applications. Doctoral Dissertation, Imperial College London, UK (2006)Google Scholar
  22. 22.
    Oran, A., et al.: An HMM-based map matching method with cumulative proximity-weight formulation. In: IEEE 2013 International Conference on Connected Vehicles and Expo (ICCVE), pp. 480–485 (2013)Google Scholar
  23. 23.
    Dabbour, E., Easa, S.M., Abd El Halim, A.O.: Radius requirements for reverse horizontal curves on three-dimensional alignments. J. Transp. Eng. 130(5), 610–620 (2004)CrossRefGoogle Scholar
  24. 24.
    Zhong, S., Bian, L.: A location-centric network approach to analyzing epidemic dynamics. Ann. Am. Assoc. Geogr. 106(2), 480–488 (2016)Google Scholar
  25. 25.
    Tang, B., Yiu, M. L., Mouratidis, K., Wang, K.: Efficient motif discovery in spatial trajectories using discrete Fréchet distance. In: Proceedings of the 20th International Conference on Extending Database Technology (EDBT), pp. 378–389 (2017)Google Scholar
  26. 26.
    Agarwal, P.K., Avraham, R.B., Kaplan, H., Sharir, M.: Computing the discrete Fréchet distance in subquadratic time. SIAM J. Comput. 43(2), 429–449 (2014)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kenefic, R.J.: Track clustering Using Fréchet distance and minimum description length. J. Aerosp. Inf. Syst. 11(8), 512–524 (2014)Google Scholar
  28. 28.
    Zheng, Y.: Trajectory data mining: an overview. ACM Trans. Intell. Syst. Technol. (TIST) 6(3), 29 (2015)Google Scholar
  29. 29.
    Hong, L., Chen, G.: Segment-based stereo matching using graph cuts. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004 (CVPR 2004), June 2004, vol. 1, pp. I-I (2004)Google Scholar
  30. 30. Accessed 23 Jan 2017
  31. 31.
    Encarnacion, I.V., Tiglao, N.M.C.: RTKLIB-based GPS localization for multipath mitigation in ITS applications. In: IEEE 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), July 2016, pp. 1077–1082 (2016)Google Scholar
  32. 32.
    Weber, G., Dettmering, D., Gebhard, H.: Networked transport of RTCM via internet protocol (NTRIP). In: A Window on the Future of Geodesy, pp. 60–64. Springer, Berlin (2005)Google Scholar
  33. 33.
    Quddus, M.A., et al.: A high accuracy fuzzy logic based map matching algorithm for road transport. J. Intell. Transp. Syst. 10(3), 103–115 (2006)CrossRefGoogle Scholar
  34. 34.
    Wang, D., et al.: A general sequential Monte Carlo method based optimal wavelet filter: a Bayesian approach for extracting bearing fault features. Mech. Syst. Signal Process. 52, 293–308 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kanta Prasad Sharma
    • 1
    Email author
  • Ramesh C. Pooniaa
    • 1
  • Surendra Sunda
    • 2
  1. 1.Amity Institute of Information TechnologyAmity UniversityRajasthanIndia
  2. 2.Indian Space Research Organisation (ISRO)BengaluruIndia

Personalised recommendations