Advertisement

Cluster Computing

, Volume 22, Supplement 3, pp 6197–6208 | Cite as

The first-principle calculation method for thermal structure stability analysis based on the simulation and sensing on cohesive energy

  • Jiahui Li
  • Jianhong GongEmail author
  • Qiaoling Chen
  • Shengnan Liu
  • Jun Gao
Article
  • 94 Downloads

Abstract

Thermal stability of a series of B-doped diamond models has been resolved by means of the simulations. And the accuracy of the model is proved by simulation computation. It was performed by adopting the first-principles calculation of plane wave ultra-soft pseudo-potential technology based upon the density function theory. The calculated values of cohesive energy and heats of formation showed that B4C60 has the weakest crystal stability, and lowest structure stability. Lattice constant, elastic constant have been calculated. Cohesive energy, heats of formation, Debye temperature is discussed. The calculation values of bulk moduli, shear moduli, Young’s moduli and Poisson ratio have also been given. The electronic properties of these B-doped models have been investigated using the functional theory within a local density approximation.

Keywords

Boron doped First-principle calculations Thermal stability 

Notes

Acknowledgements

The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center, Shandong University, Weihai. And this paper is supported by the Natural Science Foundation of Shandong Province (No. ZR2014EMM011).

References

  1. 1.
    Field, J.E.: The properties of diamond. Academic Press, Cambridge (1979)Google Scholar
  2. 2.
    Yoshida, K., Morigami, H.: Thermal properties of diamond/copper composite material. Microelectron. Reliab. 44(2), 303–308 (2004)CrossRefGoogle Scholar
  3. 3.
    Yuan, Z.J., Zhou, M., Dong, S.: Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultra precision machining. J. Mater. Process. Technol. 62(4), 327–330 (1996)CrossRefGoogle Scholar
  4. 4.
    Wentorf, R.H., Rocco, W.A.: Diamond tools for machining: US, US3745623 (1973)Google Scholar
  5. 5.
    Chrenko, R.M.: Boron, the dominant acceptor in semiconducting diamond. Phys. Rev. B 7(10), 4560 (1973)CrossRefGoogle Scholar
  6. 6.
    Takano, Y., Nagao, M., Tachiki, M., et al.: Superconductivity in boron-doped diamond thin film. US, US 7976893 B2 (2011)Google Scholar
  7. 7.
    Gong, J.H., Mu-Sen, L.I., Yong-Xin, Q.I., et al.: Study on the crystal structure and oxidation resistance of boron-doped synthetic diamond. Superhard Mater. Eng. 4, 019 (2009)Google Scholar
  8. 8.
    Linares, R.C.: Boron-doped diamond semiconductor. US, US8158455 (2012)Google Scholar
  9. 9.
    Bustarret, E., Kacmarcik, J., Marcenat, C., et al.: Dependence of the superconducting transition temperature on the doping level in single-crystalline diamond films. Phys. Rev. Lett. 93(23), 237005 (2004)CrossRefGoogle Scholar
  10. 10.
    Wang, Z.L., Luo, Q., Liu, L.W., et al.: The superconductivity in boron-doped polycrystalline diamond thick films. Diam. Relat. Mater. 15(4–8), 659–663 (2006)CrossRefGoogle Scholar
  11. 11.
    Kopelevich, Y., Esquinazi, P.: Ferromagnetism and superconductivity in carbon-based systems. J. Low Temp. Phys. 146(5–6), 629–639 (2007)CrossRefGoogle Scholar
  12. 12.
    Umezawa, H., Takenouchi, T., Takano, Y., et al.: Advantage on superconductivity of heavily boron-doped (111) diamond films. Physics (2005)Google Scholar
  13. 13.
    Winzer, K., Bogdanov, D., Wild, C.: Electronic properties of boron-doped diamond on the border between the normal and the superconducting state. Physica C (Amsterdam, Neth.) 432(1–2), 65–70 (2005)CrossRefGoogle Scholar
  14. 14.
    Bustarret, E., Achatz, P., Sacépé, B., et al.: Metal-to-insulator transition and superconductivity in boron-doped diamond. Phys. Rev. B 75(16), 1418–1428 (2007)Google Scholar
  15. 15.
    Ma, Y., Tse, J.S., Cui, T., Klug, D.D., Zhang, L., Xie, Y., Niu, Y., Zou, G.: First-principles study of electron-phonon coupling in hole-and electron-doped diamonds in the virtual crystal approximation. Phys. Rev. B 72, 014306 (2005)CrossRefGoogle Scholar
  16. 16.
    Blase, X., Adessi, C., Connétable, D.: Superconductivity in boron-doped diamond. Phys. Rev. Lett. 93(23), 237003 (2004)CrossRefGoogle Scholar
  17. 17.
    Xiang, H.J., Li, Z., Yang, J., et al.: Electron-phonon coupling in boron-doped diamond superconductor. Phys. Rev. B 70(21), 155–163 (2004)CrossRefGoogle Scholar
  18. 18.
    Sque, S.J., Jones, R., Briddon, P.R.: Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces. Phys. Rev. B 73(8), 085313 (2006)CrossRefGoogle Scholar
  19. 19.
    Giustino, F., Yates, J.R., Souza, I., et al.: Electron-phonon interaction via electronic and lattice Wannier functions: superconductivity in boron-doped diamond reexamined. Phys. Rev. Lett. 98(4), 047005 (2007)CrossRefGoogle Scholar
  20. 20.
    Bourgeois, E., Bustarret, E., Achatz, P., et al.: Impurity dimers in superconducting B-doped diamond: experiment and first-principles calculations. Phys. Rev. B 74(9), 094509 (2006)CrossRefGoogle Scholar
  21. 21.
    Long, R., Dai, Y., Guo, M., Yu, L., Huang, B.B., Zhang, R.Q., Zhang, W.J.: Effect of B-complexes on lattice structure and electronic properties in heavily boron-doped diamond. Diam. Relat. Mater. 17, 234 (2008)CrossRefGoogle Scholar
  22. 22.
    Zhang, R.J., Lee, S.T., Lam, Y.W.: Characterization of heavily boron-doped diamond films. Diam. Relat. Mater. 5(5), 1288–1294 (1996)CrossRefGoogle Scholar
  23. 23.
    Ushizawa, K., Watanabe, K., Ando, T., Sakaguchi, I., Nishitani-Gamo, M., Sato, Y., Kanda, H.: Boron concentration dependence of Raman spectra on {100} and {111} facets of B-doped CVD diamond. Diam. Relat. Mater. 7, 1719 (1998)CrossRefGoogle Scholar
  24. 24.
    Suli: Microstructure and properties of boron-dopped diamond synthesized by fe-based catalyst. Doctoral dissertation, Shandong UniversityGoogle Scholar
  25. 25.
    Stotter, J., Zak, J., Behler, Z., et al.: Optical and electrochemical properties of optically transparent, boron-doped diamond thin films deposited on quartz. Anal. Chem. 74(23), 5924–5930 (2003)CrossRefGoogle Scholar
  26. 26.
    Unwin, P., Macpherson, J., Newton, M.: Boron-doped diamond: EP, WO/2010/029277 (2010)Google Scholar
  27. 27.
    Payne, M.C.: MC Payne, MP Teter, DC Allan, TA Arias, and JD Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992). Rev. Mod. Phys. 64, 1045 (1992)CrossRefGoogle Scholar
  28. 28.
    Tiwari, A.K., Goss, J.P.: Electronic and structural properties of diamond (001) surfaces terminated by selected transition metals. Phys. Rev. B 86(15), 155301 (2012)CrossRefGoogle Scholar
  29. 29.
    Long, Run: Diamond and zinc nitride semiconductor electronic properties. Shandong University, Jinan (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jiahui Li
    • 1
  • Jianhong Gong
    • 1
    Email author
  • Qiaoling Chen
    • 1
  • Shengnan Liu
    • 1
  • Jun Gao
    • 1
  1. 1.School of Mechanical, Electrical and Information EngineeringShandong University, WeihaiWeihaiChina

Personalised recommendations