Cluster Computing

, Volume 22, Supplement 5, pp 12883–12895 | Cite as

Maximizing quality of multimedia streaming services in heterogeneous wireless networks using optimal multi-server technique

  • S. DuraimuruganEmail author
  • P. Jesu Jayarin


User expectations pertaining to multimedia data is huge. Issues in streaming like slow start and buffering hinder the quality of received content. Many authors have addressed the buffering issues. Their solutions in order to avoid buffering focussed on reducing the received multimedia quality in an attempt to avoid buffering. In this proposed work, quality issues in multimedia streaming have been focussed upon in WLAN-4G networks. A modified cat swarm optimization algorithm for optimal server selection (MCSO-SS) has been proposed to maximize the multimedia quality in terms of quality of service (QoS) and quality of experience (QoE). The proposed technique has been tested in a heterogeneous wireless environment that includes WLAN and 4G cellular networks. Experimental results prove that our proposed MCSO-SS based streaming technique increases the received multimedia content quality compared to existing techniques in terms of QoS (delay, throughput, service failure rate), and QoE (PSNR, SSIM).


Buffering issue Modified cat swarm optimization algorithm Quality of service Quality of experience Heterogeneous wireless network (WLAN-4G) MCSO-SS PSNR SSIM 


  1. 1.
    Mahdavipour, O., Mueller-Sim, T., Fahimi, D., Croshere, S., Pillatsch, P., Merukh, J., Baruffa, V., Sabino, J., Tran, K., Alanis, G., Solomon, P., Wright, P., White, R., Gundel, L., Paprotny, I.: Wireless sensors for automated control of total incombustible content (TIC) of dust deposited in underground coal mines, 2015 IEEE SENSORS (2015)Google Scholar
  2. 2.
    Hammoudeh, M., Al-Fayez, F., Lloyd, H., Newman, R., Adebisi, B., Bounceur, A., Abuarqoub, A.: A wireless sensor network border monitoring system: deployment issues and routing protocols. IEEE Sensors J. 17(8), 2572–2582 (2017)CrossRefGoogle Scholar
  3. 3.
    Bhosle, A., Gavhane, L.: Forest disaster management with wireless sensor network. In: 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) (2016)Google Scholar
  4. 4.
    Miranda, H., Gilja, V., Chestek, C., Shenoy, K., Meng, T.: HermesD: a high-rate long-range wireless transmission system for simultaneous multichannel neural recording applications. IEEE Trans. Biomed. Circ. Syst. 4(3), 181–191 (2010)CrossRefGoogle Scholar
  5. 5.
    Liu, J., Rao, S., Li, B., Zhang, H.: Opportunities and challenges of peer-to-peer internet video broadcast. Proc. IEEE 96(1), 11–24 (2008)CrossRefGoogle Scholar
  6. 6.
    Chen, J., Zhang, X.: QoS of mobile real-time streaming adapted to bandwidth. In: 2013 IEEE 10th International Conference on High Performance Computing and Communications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing (2013)Google Scholar
  7. 7.
    Lee, S.-I., Lee, D., Ko, Y., Kang, S.-G.: A nondisruptive multi-path handoff scheme for peer-to-peer live video streaming. In: 2010 International Conference on Information and Communication Technology Convergence (ICTC) (2010)Google Scholar
  8. 8.
    Stefano, D., Toni, L., Frossard, P.: Price-based controller for utility-aware HTTP adaptive streaming. IEEE Multimed. 24, 20–29 (2017)Google Scholar
  9. 9.
    Van Lancker, W., Van Deursen, D., Mannens, E., Van de Walle, R.: HTTP adaptive streaming with Media Fragment URIs. In: 2011 IEEE International Conference on Multimedia and Expo (2011)Google Scholar
  10. 10.
    Mushtaq, M., Augustin, B., Mellouk, A.: Regulating QoE for adaptive video streaming using BBF method. In: 2015 IEEE International Conference on Communications (ICC) (2015)Google Scholar
  11. 11.
    Weber, S., de Veciana, G.: Rate adaptive multimedia streams: optimization and admission control. IEEE/ACM Trans. Netw. 13(6), 1275–1288 (2005)CrossRefGoogle Scholar
  12. 12.
    Chan, Siu-Ping, Kok, C., Wong, A.: Multimedia streaming gateway with jitter detection. IEEE Trans. Multimed. 7(3), 585–592 (2005)CrossRefGoogle Scholar
  13. 13.
    Muntean, G.: Efficient Delivery of Multimedia Streams Over Broadband Networks Using QOAS. IEEE Trans. Broadcast. 52(2), 230–235 (2006)CrossRefGoogle Scholar
  14. 14.
    Dai, M., Loguinov, D., Radha, H.: Rate-distortion analysis and quality control in scalable internet streaming. IEEE Trans. Multimed. 8(6), 1135–1146 (2006)CrossRefGoogle Scholar
  15. 15.
    Lee, H., Moon, S., Kim, J.: Enhanced UPnP QoS architecture for network-adaptive streaming service in home networks. IEEE Trans. Consum. Electron. 53(3), 898–904 (2007)CrossRefGoogle Scholar
  16. 16.
    Oh, B., Chen, C.: A cross-layer approach to multichannel MAC protocol design for video streaming over wireless ad hoc networks. IEEE Trans. Multimed. 11(6), 1052–1061 (2009)CrossRefGoogle Scholar
  17. 17.
    Park, J., Karrer, R., Kim, J.: TCP-ROME: a transport-layer parallel streaming protocol for real-time online multimedia environments. J. Commun. Netw. 13(3), 277–285 (2011)CrossRefGoogle Scholar
  18. 18.
    Wu, J., Yuen, C., Wang, M., Chen, J.: Content-aware concurrent multipath transfer for high-definition video streaming over heterogeneous wireless networks. IEEE Trans. Parallel Distrib. Syst. 27(3), 710–723 (2016)CrossRefGoogle Scholar
  19. 19.
    Xiang, S., Xing, M., Cai, L., Pan, J.: Dynamic rate adaptation for adaptive video streaming in wireless networks. Signal Process. 39, 305–315 (2015)Google Scholar
  20. 20.
    Miller, K., Bethanabhotla, D., Caire, G., Wolisz, A.: A control-theoretic approach to adaptive video streaming in dense wireless networks. IEEE Trans. Multimed. 17(8), 1309–1322 (2015)CrossRefGoogle Scholar
  21. 21.
    Lee, H.S., Lim, K.H., Kim, S.J.: A configuration scheme for connectivity-aware mobile P2P networks for efficient mobile cloud-based video streaming services. Cluster Comput. 16, 745–756 (2013). CrossRefGoogle Scholar
  22. 22.
    Sterca, A., Hellwagner, H., Boian, F., Vancea, A.: Media-friendly and TCP-friendly rate control protocols for multimedia streaming. IEEE Trans. Circ. Syst. Video Technol. 26(8), 1516–1531 (2016)CrossRefGoogle Scholar
  23. 23.
    Joseph, V., Borst, S., Reiman, M.: Optimal rate allocation for video streaming in wireless networks with user dynamics. IEEE/ACM Trans. Netw. 24(2), 820–835 (2016)CrossRefGoogle Scholar
  24. 24.
    Abu-Lebdeh, M., Belqasmi, F., Glitho, R.: An architecture for QoS-enabled mobile video surveillance applications in a 4G EPC and M2M environment. IEEE Access 4, 4082–4093 (2016)CrossRefGoogle Scholar
  25. 25.
    Hassan, M., Farooq, U.: Adaptive and ubiquitous video streaming over Wireless Mesh Networks. J. King Saud Univ. 28(4), 432–446 (2016)Google Scholar
  26. 26.
    Vijayakumar, K., Arun, C.: Automated risk identification using NLP in cloud based development environments. J. Ambient Intell. Humaniz. Comput. (2017).
  27. 27.
    Vijayakumar, K., Arun, C.: Continuous security assessment of cloud based applications using distributed hashing algorithm in SDLC. Cluster Comput. (2017).
  28. 28.
    Varatharajan, R., Manogaran, G., Priyan, M.K., Sundarasekar, R.: Wearable sensor devices for early detection of Alzheimer disease using dynamic time warping algorithm. Cluster Comput.
  29. 29.
    Wang, T., Cai, Y., Jia, W., Wen, S., Wang, G., Tian, H., Chen, Y., Zhong, B.: Maximizing real-time streaming services based on a multi-servers networking framework. Comput. Netw. 93, 199–212 (2015)CrossRefGoogle Scholar
  30. 30.
    Chu, S., Tsai, P., Pan, J.: Cat Swarm Optimization. Lecture Notes in Computer Science, pp. 854–858 (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringSathyabama Institute of Science and TechnologyChennaiIndia
  2. 2.Department of Information TechnologySt. Joseph’s College of EngineeringChennaiIndia
  3. 3.Department of Computer Science and EngineeringJeppiaar Engineering CollegeChennaiIndia

Personalised recommendations