Advertisement

Cluster Computing

, Volume 22, Supplement 3, pp 6031–6041 | Cite as

Access patterns mining from massive spatio-temporal data in a smart city

  • Lian Xiong
  • Xiaojun LiuEmail author
  • Daixin Guo
  • Zhihua Hu
Article

Abstract

Facing with massive spatio-temporal data, the traditional pattern mining methods fail to directly reflect the spatio-temporal correlation and transition rules of user access in a smart city. In this paper, we analyze the characteristics of spatio-temporal data, and map the history of user access requests to the spatio-temporal attribute domain. Then, we perform correlation analysis and identify variation rules for access requests by using regional meshing, association rules and ARIMA in the spatio-temporal attribute domain, for the purpose of mining user access patterns and predict the user’s access request. Experimental results show that our pattern mining algorithms is simple yet effective, and it achieves a prediction accuracy of 84.3% for access requests.

Keywords

Smart city Spatio-temporal data Pattern mining Request prediction 

Notes

Acknowledgements

This project was supported by the Natural Science Fund of Hubei Province (Research on small file merging strategy for massive spatio-temporal data in smart city, 2018, Liu Xiaojun), the Scientific Research Program of Huanggang Normal University (Grant No. 201618003), the humanities and social science research project of the Ministry of Education, special project of science and technology personnel research project (No:13JDGC020), Hubei Provincial Higher Education Research Project (No: 2012376).

References

  1. 1.
    Pallis, G., Vakali, A., Pokorny, J.: A clustering-based prefetching scheme on a web cache environment. Comput. Electr. Eng. 34(4), 309–323 (2008)CrossRefGoogle Scholar
  2. 2.
    Wan, M., Jönsson, A., Wang, C., et al.: Web user clustering and web prefetching using random indexing with weight functions. Knowl. Inf. Syst. 33(1), 89–115 (2011)CrossRefGoogle Scholar
  3. 3.
    Cadez, I., Heckerman, D., Meek, C., et al.: Model-based clustering and visualization of navigation patterns on a web site. Data Min. Knowl. Dis. 7(4), 399–424 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Perkowitz, M., Etzioni, O.: Adaptive web sites: automatically synthesizing web pages. In: Proceedings of the American Association for Artificial Intelligence (AAAI-98), pp. 727–732 (1998)Google Scholar
  5. 5.
    Perkowitz, M., Etzioni, O.: Adaptive web sites. Commun. ACM 43(10), 152–158 (2000)CrossRefGoogle Scholar
  6. 6.
    Mobasher, B., Dai, H., Luo, T., et al.: Effective personalization based on association rule discovery from web usage data. In: Proceedings of International Workshop on Web Information & Data Management, pp. 9–15 (2001)Google Scholar
  7. 7.
    Matthews, S.G., Gongora, M.A., Hopgood, A.A., et al.: Temporal fuzzy association rule mining with 2-tuple linguistic representation. In: IEEE International Conference on Fuzzy Systems, pp. 1–8 (2012)Google Scholar
  8. 8.
    Matthews, S.G., Gongora, M.A., Hopgood, A.A., et al.: Web usage mining with evolutionary extraction of temporal fuzzy association rules. Knowl. Based Syst. 54(4), 66–72 (2013)CrossRefGoogle Scholar
  9. 9.
    Khosravi, M., Tarokh, M.J.: Dynamic mining of users interest navigation patterns using naive Bayesian method. In: IEEE International Conference on Intelligent Computer Communication and Processing, pp. 119–122 (2010)Google Scholar
  10. 10.
    Selva Prabhu, A.P., Ravi, T.: Hilbert space clustering based chronological backward search for effective web sequential pattern mining. Int. J. Comput. Appl. 175(7), 43–52 (2017)Google Scholar
  11. 11.
    Yang, J., Huang, H., Jin, X.: Mining web access sequence with improved apriori algorithm. In: IEEE International Conference on Computational Science and Engineering. IEEE (2017)Google Scholar
  12. 12.
    Jalali, M., Mustapha, N., Mamat, A., et al.: Web user navigation pattern mining approach based on graph partitioning algorithm. J. Theor. Appl. Inf. Technol. 11, 1125–1130 (2008)Google Scholar
  13. 13.
    Park, S., Suresh, N.C., Jeong, B.K.: Sequence-based clustering for Web usage mining: a new experimental framework and ANN-enhanced K-means algorithm. Data Knowl. Eng. 65(3), 512–543 (2008)CrossRefGoogle Scholar
  14. 14.
    Mobasher, B.: Data mining for web personalization. In: The Adaptive Web, pp. 90–135. Springer, Berlin (2007)Google Scholar
  15. 15.
    Joshi, A., Krishnapuram, R.: On mining web access logs. In: ACM SIGMOD Workshop on Research Issues in Data Mining & Knowledge Discovery, pp. 63–69 (2000)Google Scholar
  16. 16.
    Shrivastava, M.V., Gupta, M.N.: Performance improvement of web usage mining by using learning based K-mean clustering. Int. J. Comput. Sci. Appl. ISSN: 2250–3765 (2012)Google Scholar
  17. 17.
    Wang, T.Z.: The development of web log mining based on improve K-means clustering analysis. In: Advances in Computer Science and Information Engineering, pp. 613–618. Springer, Berlin (2012)Google Scholar
  18. 18.
    Zhang, D., Lee, K., Lee, I.: Periodic pattern mining for spatio-temporal trajectories: a survey. In: Proceedings of the International Conference on Intelligent Systems and Knowledge Engineering, pp. 306–313. IEEE (2016)Google Scholar
  19. 19.
    Yu, Y.-W., Qi, J.-P., Lu, Y.-H., et al.: Distributed swarm pattern mining algorithm in big spatio-temporal trajectory data. Comput. Eng. Sci. 38(2), 255–261 (2016)Google Scholar
  20. 20.
    Feng, Z., Zhu, Y.: A survey on trajectory data mining: techniques and applications. IEEE Access 4, 2056–2067 (2017)CrossRefGoogle Scholar
  21. 21.
    Al-Serafi, A., Elragal, A.: Visual trajectory pattern mining: an exploratory study in baggage handling systems. In: Industrial Conference on Data Mining, pp. 159–173. Springer, Berlin (2014)CrossRefGoogle Scholar
  22. 22.
    Choi, D.W., Pei, J., Heinis, T.: Efficient mining of regional movement patterns in semantic trajectories. Proc. Vldb Endow. 10(13), 2073–2084 (2017)CrossRefGoogle Scholar
  23. 23.
    Ramos, J., César, A., Neves, J., et al.: Adapting the user path through trajectory data mining. In: The 8th International Symposium on Ambient Intelligence, Porto, Portugal, pp. 195–202 (2017)Google Scholar
  24. 24.
    Yang, G., Huang, Z., Wang, X.: Comparison study of sub-trajectory clustering in data mining. IOP Conf. Ser.: Earth Environ. Sci. 69(1), 012143 (2017)CrossRefGoogle Scholar
  25. 25.
    Debnath, M., Tripathi, P.K., Elmasri, R.: A novel approach to trajectory analysis using string matching and clustering. In: IEEE, International Conference on Data Mining Workshops, pp. 986–993. IEEE (2013)Google Scholar
  26. 26.
    Yang, Y., Cui, Z., Wu, J., et al.: Trajectory analysis using spectral clustering and sequene pattern mining. J. Comput. Inf. Syst. 8(6), 2637–2645 (2012)Google Scholar
  27. 27.
    Møgelmose, A., Trivedi, M.M., Moeslund, T.B.: Trajectory analysis and prediction for improved pedestrian safety: integrated framework and evaluations. In: Intelligent Vehicles Symposium, pp. 330–335. IEEE (2015)Google Scholar
  28. 28.
    Silva, T.C.D, Zeitouni, K., Macedo, J., et al.: On-line mobility pattern discovering using trajectory data. In: International Conference on Extending Database Technology (2016)Google Scholar
  29. 29.
    Li, F., Long, X., Du, S., et al.: Analyzing campus mobility patterns of college students by using GPS trajectory data and graph-based approach. In: International Conference on Geoinformatics, pp. 1–5. IEEE (2016)Google Scholar
  30. 30.
    Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques: Concepts and Techniques. Elsevier, Amsterdam (2011)zbMATHGoogle Scholar
  31. 31.
    Zhang, G.P.: Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50(1), 159–175 (2003)CrossRefGoogle Scholar
  32. 32.
    Tran, N., Reed, D.: Automatic ARIMA time series modeling for adaptive I/O prefetching. IEEE Trans. Parallel Distrib. Syst. 15(4), 362–377 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lian Xiong
    • 1
  • Xiaojun Liu
    • 2
    Email author
  • Daixin Guo
    • 3
  • Zhihua Hu
    • 2
  1. 1.School of Communication and Information TechnologyChongqing University of Posts and TelecommunicationsChongqingChina
  2. 2.School of TransportationHuanggang Normal UniversityHuanggangChina
  3. 3.Wuhan Maritime Communication Research InstituteWuhanChina

Personalised recommendations