Advertisement

Cluster Computing

, Volume 22, Supplement 1, pp 1679–1690 | Cite as

A localization and tracking scheme for target gangs based on big data of Wi-Fi locations

  • Fan Zhao
  • Wenqi Shi
  • Yong Gan
  • Ziru Peng
  • Xiangyang LuoEmail author
Article

Abstract

The modeling and analysis of target gangs’ usual haunts plays a very important role in law enforcement and supervision. Existing localization and tracking schemes usually need to deploy a large number of monitoring devices or continue to move with the target, which lead to high cost. In this paper, a localization and tracking scheme based on big data of Wi-Fi locations is proposed. Firstly, the characteristic of the smart mobile device that continuously broadcasts probe request frames is used to obtain its MAC address and Wi-Fi connection history. Secondly, the service set identifier (SSID) in the Wi-Fi connection history of smart mobile devices held by the target gangs are queried from the Wi-Fi location database, and the target gangs’ usual haunts are gained by statistical analysis. Lastly, monitoring devices are deployed in these places, and most of the target gangs’ activity pattern are known with only a small number of monitoring devices. The results of the related experimental tests demonstrate the feasibility of the proposed scheme.

Keywords

Big data of Wi-Fi locations Smart mobile device Target gangs Localization Tracking 

Notes

Acknowledgements

The National Key R&D Program of China (Nos. 2016YFB0801303, 2016QY01W0105), the National Natural Science Foundation of China (Nos. U1636219, 61379151, 61401512, 61572052) and the Key Technologies R&D Program of Henan Province (No. 162102210032) support the work presented in this paper.

Compliance with Ethical Standards

Conflicts of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
    Isson, J.P., Harriott, J.S.: People Analytics in the Era of Big Data: Changing the Way You Attract, Acquire, Develop, and Retain Talent. Wiley, New York (2016)CrossRefGoogle Scholar
  5. 5.
    Li, J., Zhang, Y., Chen, X., et al.: Secure attribute-based data sharing for resource-limited users in cloud computing. Comput. Sec. 72, 1–12 (2018)CrossRefGoogle Scholar
  6. 6.
  7. 7.
    Stergiou, C., Psannis, K.E., Kim, B.G., et al.: Secure integration of IoT and cloud computing. Future Gener. Comput. Syst. 78, 964–975 (2018)CrossRefGoogle Scholar
  8. 8.
    Wang, Y., Liu, Q., Hou, H., et al.: Big data driven outlier detection for soybean straw near infrared spectroscopy. J. Comput. Sci. (2017).  https://doi.org/10.1016/j.jocs.2017.06.008
  9. 9.
    Alsmirat, M.A., Jararweh, Y., Obaidat, I., et al.: Internet of surveillance: a cloud supported large-scale wireless surveillance system. J. Supercomput. 73(3), 973–992 (2017)CrossRefGoogle Scholar
  10. 10.
    Gupta, B.B., Gupta, S., Chaudhary, P.: Enhancing the browser-side context-aware sanitization of suspicious HTML5 code for halting the DOM-based XSS vulnerabilities in cloud. Int. J. Cloud Appl. Comput. (IJCAC) 7(1), 1–31 (2017)Google Scholar
  11. 11.
    LaMarca, A., Chawathe, Y., Consolvo, S., et al.: Place lab: device positioning using radio beacons in the wild. In: Proceedings of International Conference on Pervasive Computing, pp. 116–133 (2005)Google Scholar
  12. 12.
    Emery, M., Denko, M.K.: IEEE 802.11 WLAN based real-time location tracking in indoor and outdoor environments. In: Proceedings of the Canadian Conference on Electrical and Computer Engineering, pp. 1062–1065 (2007)Google Scholar
  13. 13.
    Vinh, N.K., Long, T.Q., Viet, N.A., et al.: Efficient tracking of industrial equipment using a Wi-Fi based localization system. In: Proceedings of International Conference on Soft Computing and Pattern Recognition, pp. 129–133 (2013)Google Scholar
  14. 14.
    Xu, Z., Sandrasegaran, K., Kong, X., et al.: Pedestrain monitoring system using Wi-Fi technology and RSSI based localization. Int. J. Wirel. Mobile Netw. 5(4), 17–34 (2013)CrossRefGoogle Scholar
  15. 15.
    Kim, M., Kotz, D., Kim, S.: Extracting a mobility model from real user traces. In: Proceedings of the 25th IEEE International Conference on Computer Communications, pp. 1–13 (2006)Google Scholar
  16. 16.
    Sevtsuk, A., Huang, S., Calabrese, F., et al.: Mapping the MIT Campus in Real Time Using Wi-Fi. Handbook of Research on Urban Informatics: The Practice and Promise of the Real-Time City (2009)Google Scholar
  17. 17.
    Prentow, T.S., Ruiz-Ruiz, A.J., Blunck, H., et al.: Spatio-temporal facility utilization analysis from exhaustive Wi-Fi monitoring. Pervasive Mob. Comput. 16, 305–316 (2015)CrossRefGoogle Scholar
  18. 18.
    Cunche, M.: I know your MAC address: targeted tracking of individual using Wi-Fi. J. Comput. Virol. Hacking Tech. 10(4), 219–227 (2014)CrossRefGoogle Scholar
  19. 19.
    Musa, A.B.M., Eriksson, J.: Tracking unmodified smartphones using Wi-Fi monitors. In: Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems, pp. 281–294 (2012)Google Scholar
  20. 20.
    Vu, L., Nahrstedt, K., Retika, S., et al.: Joint bluetooth/Wi-Fi scanning framework for characterizing and leveraging people movement in university campus. In: Proceedings of the 13th ACM International Conference on Modeling, Analysis, and Simulation of Wireless and Mobile Systems, pp. 257–265 (2010)Google Scholar
  21. 21.
    Farshad, A., Marina, M.K., Garcia, F.: Urban Wi-Fi characterization via mobile Crowdsensing. In: Proceedings of the IEEE Conference on Network Operations and Management Symposium, pp. 1–9 (2014)Google Scholar
  22. 22.
    Fukuzaki, Y., Mochizuki, M., Murao, K., et al.: A pedestrian flow analysis system using Wi-Fi packet sensors to a real environment. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, 721–730 (2014)Google Scholar
  23. 23.
    Barbera, M.V., Epasto, A., Mei, A., et al.: Signals from the crowd: uncovering social relationships through smartphone probes. In: Proceedings of the 2013 ACM Conference on Internet measurement, pp. 265–276 (2013)Google Scholar
  24. 24.
    Chon, Y., Kim, S., Lee, S., et al.: Sensing Wi-Fi packets in the air: practicality and implications in urban mobility monitoring. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 189–200 (2014)Google Scholar
  25. 25.
    Fu, X., Zhang, N., Pingley, A., et al.: The digital Marauder’s map: a Wi-Fi forensic positioning tool. IEEE Trans. Mob. Comput. 11(3), 377–389 (2012)CrossRefGoogle Scholar
  26. 26.
    Wilkinson, G.: Digital terrestrial tracking: the future of surveillance. In: DEFCON 22 (2014)Google Scholar
  27. 27.
    Qin, W., Zhang, J., Li, B., et al.: Discovering human presence activities with smartphones using nonintrusive Wi-Fi sniffer sensors: the big data prospective. Int. J. Distrib. Sens. Netw. 9(12), 927–940 (2013)CrossRefGoogle Scholar
  28. 28.
    O’Connor, B.: CreepyDOL: Cheap. Distributed Stalking. Technical Paper by Malice Afterthought, Inc (2013)Google Scholar
  29. 29.
    Demir, L., Cunche, M., Lauradoux, C.: Analysing the privacy policies of Wi-Fi trackers. In: Proceedings of the ACM Workshop on Physical Analytics, pp. 39–44 (2014)Google Scholar
  30. 30.
    Scheuner, J., Mazlami, G., Schoni, D., et al.: Probr—a generic and passive WiFi tracking system. In: Proceedings of IEEE Conference on Local Computer Networks, pp. 495–502 (2016)Google Scholar
  31. 31.
    Li, P., Li, J., Huang, Z., et al.: Privacy-preserving outsourced classification in cloud computing. Clust. Comput.  https://doi.org/10.1007/s10586-017-0849-9 (2017)
  32. 32.
    Li, P., Li, J., Huang, Z., et al.: Multi-key privacy-preserving deep learning in cloud computing. Future Gener. Comput. Syst. 74, 76–85 (2017)CrossRefGoogle Scholar
  33. 33.
    Greenstein, B., Gummadi, R., Pang, J., et al.: Can Ferris Bueller still have his day off? Protecting privacy in the wireless era. In: Proceedings of HotOS (2007)Google Scholar
  34. 34.
    Gupta, B.B., Agrawal, D.P., Yamaguchi, S.: Handbook of Research on Modern Cryptographic Solutions for Computer and Cyber Security. Springer, Berlin (2016)Google Scholar
  35. 35.
    Cunche, M., Kaafar, M.A., Boreli, R.: Linking wireless devices using information contained in Wi-Fi probe requests. Pervasive Mob. Comput. 11, 56–69 (2014)CrossRefGoogle Scholar
  36. 36.
    Huang, Z., Liu, S., Mao, X,. et al.: Insight of the protection for data security under selective opening attacks. Inf. Sci.  https://doi.org/10.1016/j.ins.2017.05.031 (2017)
  37. 37.
    Chernyshev, M., Valli, C., Hannay, P.: On 802.11 Access point locatability and named entity recognition in service set identifiers. IEEE Trans. Inf. Forensics Sec. 11(3), 584–593 (2016)CrossRefGoogle Scholar
  38. 38.
  39. 39.
    Li, J., Chen, X., Li, M., et al.: Secure deduplication with efficient and reliable convergent key management. IEEE Trans. Parallel Distrib. Syst. 25(6), 1615–1625 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Fan Zhao
    • 1
    • 2
  • Wenqi Shi
    • 1
    • 2
  • Yong Gan
    • 3
  • Ziru Peng
    • 1
    • 2
  • Xiangyang Luo
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Mathematical Engineering and Advanced ComputingZhengzhouChina
  2. 2.Zhengzhou Science and Technology InstituteZhengzhouChina
  3. 3.Zhengzhou University of Light IndustryZhengzhouChina

Personalised recommendations