Cluster Computing

, Volume 22, Supplement 3, pp 6913–6919 | Cite as

Implication of video summarization and editing of video based on human faces and objects using SURF (speeded up robust future)

  • S. Ashokkumar
  • A. Suresh
  • M. G. KavithaEmail author


Video editing reflects the mind of the viewers, summarizing those kinds of videos creates a great challenge. Several conventional methods have been used for video summarization. To comprehend the user initiated editing SURF is proposed. SURF accelerated based on image and object processing. Motion images pivoted on the images and the object folders, matched frames are successfully correlated into a video. Motivational aspect of SURF is to extend match videos for objects using Viola–Jones algorithm and detect the facial expression.


Video summarization Viola–Jones SURF 


  1. 1.
    Ahanger, G.: Automatic composition techniques for video production. IEEE Trans. Knowl. Data Eng. 10(6), 967–987 (1998)CrossRefGoogle Scholar
  2. 2.
    Ashok Kumar, S., Thyagharajan, K.K.: Facial expression recognition with auto-illumination correction. In: Proceedings of the International Conference on Green Computing, Communication and Conservation of Energy (ICGCE), ISBN: 978-1-4673-6125-5 (2013)Google Scholar
  3. 3.
    Barnes, C., Goldman, D., Shechtman, E., Finkelstein, A.: Video tapestries with continuous temporal zoom. In: Proceedings of the Siggraph (2010)Google Scholar
  4. 4.
    Bennett, E.: Computational time-lapse video. ACM Trans. Graph. 26, 102 (2007)CrossRefGoogle Scholar
  5. 5.
    Bhat, K.S., Seitz, S.M., Hodgins, J.K., Khosla, P.K., Bhat, K.S., Seitz, S.M., Hodgins, J.K., Khosla, P.K.: Flow-based video synthesis and editing. ACM Trans. Graph. 23(3), 360–363 (2004)CrossRefGoogle Scholar
  6. 6.
    Calic, J., Gibson, D., Campbell, N.: Efficient layout of comic-like video summaries. IEEE Trans. Circuits Syst. Video Technol. 17(7), 931–936 (2007)CrossRefGoogle Scholar
  7. 7.
    Caspi, Y., Axelrod, A., Matsushita, Y., Gamliel, A.: Dynamic stills and clip trailers. Visual Comput. 22(9), 642–652 (2006)CrossRefGoogle Scholar
  8. 8.
    Chen, Q., Huang, Z., Hua, Y., Song, Z.: Video puzzle: descriptive one-shot videos. (2013)CrossRefGoogle Scholar
  9. 9.
    Chithra, A., Shankar, M.C.: Extraction of exclusive video content from one shot video. Int. J. Recent Innov. Trends Comput. Commun. 2(3) (2017)Google Scholar
  10. 10.
    Chiu, P., Girgensohn, A., Liu, Q.: Stained-glass visualization for highly condensed video summaries. In: Proceedings of the ICME (2004)Google Scholar
  11. 11.
    Cootes, T., Taylor, C., Cooper, D.: Active shape models—their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Jasmine, R., Thyagharajan, K.K.: Study on recent approaches for human action recognition in real time. Int. J. Eng. Res. Technol. (2015)
  14. 14.
    Li, X., Zhao, B., Lu, X.: A general framework for editing video and raw video summarization. IEEE Trans. Image Process. (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Philbin, O.C.: Near duplicate image detection: min-hash and tf-idf weighting. In: Proceedings of theBMVC, pp. 810–815 (2008).
  16. 16.
    Sahoo, A., Kaushal, V., Khoshtrav, D., Suyash, S., Rishabh, I.: A unified multi-faceted video summarization system. Comput. Vis. Pattern Recognit. (2017)Google Scholar
  17. 17.
    Thanikachalam, V., Thyagharajan, K.K.: Automatic understanding of human actions in videos. Int. J. Adv. Res. Comput. Sci. Manag. Stud. 3(11), 105–111 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringAnna UniversityChennaiIndia
  2. 2.Department of Electrical and Electronics EngineeringS.A Engineering CollegeChennaiIndia
  3. 3.Department of Computer Science and EngineeringUniversity College of Engineering PattukkottaiRajamadamIndia

Personalised recommendations