Advertisement

Cluster Computing

, Volume 22, Supplement 4, pp 8217–8224 | Cite as

A flexible and highly sensitive graphene-based strain sensor for structural health monitoring

  • Meng NieEmail author
  • Yun-han Xia
  • Heng-shan Yang
Article

Abstract

Recently, flexible strain sensors with excellent stretchability and sensitivity have attracted increasing interests. Most flexible strain sensors have multifunctional applications in human motion monitoring, transparent and wearable electronic systems, however, they also can be applied in other fields such as structural health monitoring (SHM). In this paper, a flexible strain sensor which was assembled by adhering graphene mesh film on liquid crystal polymer substrate constructed by an efficient, low-cost fabrication strategy for applying in SHM is presented. By means of monitoring the relative resistance change of graphene mesh film of the strain sensor, the strain caused by the minor displacement of the structure could be detected. The experiment results showed that the strain sensor had a high gauge factor (375–473) under different tensile strain (0.1–1.4%) and good stability (1000 test cycles). It can be verified that the sensor has high sensitivity and good stability, which makes it have potential application in SHM.

Keywords

Flexible Strain sensor Graphene SHM LCP 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grand No. 61474023) and National Key Technology Support Program of China (Grand No. 2015BAF16B01).

References

  1. 1.
    Herrmann, J., Müller, K.H., Reda, T., Baxter, G.R., Raguse, B., de Groot, G.J.J.B., Chai, R., Roberts, M.: Nano particle films as sensitive strain gauges. Appl. Phys. Lett. 91, 183105 (2007)CrossRefGoogle Scholar
  2. 2.
    Adhikari, B.R., Govindhan, M., Chen, A.: Carbon nanomaterials based electrochemical sensors/biosensors for the sensitive detection of pharmaceutical and biological compounds. Sensors 15, 22490–22508 (2015)CrossRefGoogle Scholar
  3. 3.
    Obitayo, W., Liu, T.: Carbon nano tube-based piezoresistive strain sensors-a review. J. Sensors 61, 276–283 (2012)Google Scholar
  4. 4.
    Tadakaluru, S., Thongsuwan, W., Singjai, P.: Stretchable and flexible high-strain sensors made using carbon nanotubes and graphite films on natural rubber. Sensors 14, 868–876 (2014)CrossRefGoogle Scholar
  5. 5.
    Fernández-Regúlez, M., Plaza, J.A., Lora-Tamayo, E., Paulo, A.S.: Lithography guided horizontal growth of silicon nanowires for the fabrication of ultrasensitive piezoresistive strain gauges. Microelectr. Eng. 87, 1270–1273 (2010)CrossRefGoogle Scholar
  6. 6.
    Li, Z., Leung, C., Gao, F., Gu, Z.: Effects of nanowire length and surface roughness on the electrochemical sensor properties of nafion-free, vertically aligned Pt nanowire array electrodes. Sensors 15, 22473–22489 (2015)CrossRefGoogle Scholar
  7. 7.
    Selyanchyn, R., Wakamatsu, S., Hayashi, K., Lee, S.W.: A nano-thin film-based prototype QCM sensor array for monitoring human breath and respiratory patterns. Sensors 15, 18834–18850 (2015)CrossRefGoogle Scholar
  8. 8.
    Song, X.H., Liu, S., Gan, Z.Y., Lv, Q., Cao, H., Yan, H.: Controllable fabrication of carbon nanotube-polymer hybrid thin film for strain sensing. Microelectr. Eng. 86, 2330–2333 (2009)CrossRefGoogle Scholar
  9. 9.
    Kaltenbrunner, M., Sekitani, T., Reeder, J., Yokota, T., Kuribara, K., Tokuhara, T., Drack, M., Schwödiauer, R.: An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013)CrossRefGoogle Scholar
  10. 10.
    Wang, C., Hwang, D., Yu, Z., Takei, K., Park, J., Chen, T., Ma, B., Javey, A.: User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 12, 899–904 (2013)CrossRefGoogle Scholar
  11. 11.
    Lorwongtragool, P., Sowade, E., Watthanawisuth, N., Baumann, R.R., Kerdcharoen, T.: A novel wearable electronic nose for healthcare based on flexible printed chemical sensor array. Sensors 14, 19700–19712 (2014)CrossRefGoogle Scholar
  12. 12.
    Lipomi, D.J., Vosgueritchian, M., Tee, C.K., Hellstrom, S.L., Lee, J.A., Fox, C.H., Bao, Z.: Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6, 788–792 (2011)CrossRefGoogle Scholar
  13. 13.
    Fan, F.R., Lin, L., Zhu, G., Wu, W., Zhang, R.: Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12, 3109–3114 (2012)CrossRefGoogle Scholar
  14. 14.
    Culha, U., Nurzaman, S.U., Clemens, F., Iida, F.: SVAS3: strain vector aided sensorization of soft structures. Sensors 14, 12748–12770 (2014)CrossRefGoogle Scholar
  15. 15.
    Someya, T., Tsuyoshi, S., Shingo, I., Yusaku, K., Hiroshi, K., Takayasu, S.: A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl Acad. Sci. USA 101, 9966–9970 (2004)CrossRefGoogle Scholar
  16. 16.
    Cheng, M., Huang, X., Ma, C., Yang, Y.: A flexible capacitive tactile sensing array with floating electrodes. J. Micromech. Microeng. 1966, 19 (2009)Google Scholar
  17. 17.
    Lipomi, D.J., Vosgueritchian, M., Tee, B.C.K., Hellstrom, S.L., Lee, J.A., Fox, C.H., Bao, Z.N.: Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6, 788–792 (2011)CrossRefGoogle Scholar
  18. 18.
    Kang, D., Pikhitsa, V., Choi, Y.W., Lee, C., Shin, S.S., Piao, L., Park, B., Suh, K.Y.: Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516, 222–226 (2014)CrossRefGoogle Scholar
  19. 19.
    Choi, M.K., Park, I., Kim, D.C., Joh, E., Park, O.K., Kim, J., Kim, M., Choi, C.: Thermally controlled, patterned graphene transfer printing for transparent and wearable electronic/optoelectronic system. Adv. Funct. Mater. 25, 7109–7118 (2015)CrossRefGoogle Scholar
  20. 20.
    Tang, Y.C., Zhao, Z.B., Hu, H., Liu, Y., Wang, X.Z., Zhou, S.K., Qiu, J.S.: Highly stretchable and ultrasensitive strain sensor based on reduced graphene oxide microtubes-elastomer composite. ACS Appl. Mater. Interfaces 7, 27432–27439 (2015)CrossRefGoogle Scholar
  21. 21.
    Sheng, L.Z., Liang, Y., Jiang, L.L., Wang, Q., Wei, T., Qu, L.T., Fan, Z.J.: Bubble-decorated honeycomb-like graphene film as ultrahigh sensitivity pressure sensors. Adv. Funct. Mater. 25, 6545–6551 (2015)CrossRefGoogle Scholar
  22. 22.
    Yan, C.Y., Wang, J.X., Kang, W.B., Cui, M.Q., Wang, X., Foo, C.Y., Chee, K.J., Lee, P.S.: Highly stretchable piezoresistive graphene-nanocellulose nano paper for strain sensors. Adv. Mater. 26, 2022–2027 (2014)CrossRefGoogle Scholar
  23. 23.
    Wang, Y., Wang, L., Yang, T.T., Li, X., Zang, X.B., Zhu, M., Wang, K.L., Wu, D.H.: Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 24, 4666–4670 (2014)CrossRefGoogle Scholar
  24. 24.
    Dai, H., Thostenson, E.T., Schumacher, T.: Processing and characterization of a novel distributed strain sensor using carbon nanotube-based nonwoven composites. Sensors 15, 17728–17747 (2015)CrossRefGoogle Scholar
  25. 25.
    Liao, X., Liao, Q.L., Yan, X.Q., Liang, Q.J., Si, H.N., Li, M.H., Wu, H.L., Cao, S.Y.: Flexible and highly sensitive strain sensors fabricated by pencil drawn for wearable monitor. Adv. Funct. Mater. 25, 2395–2401 (2015)CrossRefGoogle Scholar
  26. 26.
    Gong, S., Schwalb, W., Wang, Y., Chen, Y., Tang, Y., Si, J., Shirinzadeh, B., Cheng, W.: A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5, 163–180 (2014)Google Scholar
  27. 27.
    Choong, C.L., Shim, M.B., Lee, B.S., Jeon, S., Ko, D.S., Kang, T.H., Bae, J., Lee, S.H.: Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micro pyramid array. Adv. Mater. 26, 3451–3458 (2014)CrossRefGoogle Scholar
  28. 28.
    Sakhaee-Pour, A., Ahmadian, M.T., Vafai, A.: Potential application of single layered graphene sheet as strain sensor. Solid State Commun. 147, 336–340 (2008)CrossRefGoogle Scholar
  29. 29.
    Pereira, V.M., Neto, A.H.C., Peres, N.M.R.: A tight-binding approach to uniaxial strain in graphene. Phys. Rev. B 80(4), 045401 (2009)CrossRefGoogle Scholar
  30. 30.
    Pellegrino, F.M.D., Angilella, G.G.N., Pucci, R.: Strain effect on the optical conductivity of graphene. Phys. Rev. B 81, 035411 (2010)CrossRefGoogle Scholar
  31. 31.
    Hasegawa, Y., Konno, R., Nakano, H., Kohmoto, M.: Zero modes of tight-binding electrons on the honeycomb lattice. Phys. Rev. B 74, 033413 (2006)CrossRefGoogle Scholar
  32. 32.
    Paussa, A., Esseni, D.: An exact solution of the linearized Boltzmann transport equation and its application to mobility calculations in graphene bilayers. J. Appl. Phys. 113(9), 093702 (2013)CrossRefGoogle Scholar
  33. 33.
    Li, X., Zhang, R.J., Yu, W.J., Wang, K.L., Wei, J.Q., Wu, D.H., Cao, A.Y., Li, Z.H.: Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci. Rep. 2, 870–875 (2012)CrossRefGoogle Scholar
  34. 34.
    Gong, S., Schwalb, W., Wang, Y., Chen, Y., Tang, Y., Si, J., Shirinzadeh, B., Cheng, B.: A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun. 5, 3132–3139 (2014)CrossRefGoogle Scholar
  35. 35.
    Yan, C., Wang, J., Kang, W., Cui, M., Wang, X., Foo, C.Y., Chee, K.J., Lee, P.S.: Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv Mater. 26, 2022–2027 (2014)CrossRefGoogle Scholar
  36. 36.
    Takei, K., Yu, Z., Zheng, M., Ota, H., Takahashi, T., Javey, A.: Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films. Proc. Natl Acad. Sci. USA 111, 1703–1707 (2014)CrossRefGoogle Scholar
  37. 37.
    Xiao, X., Yuan, L., Zhong, J., Ding, T., Liu, Y., Cai, Z., Rong, Y., Han, H., Zhou, Z., Wang, Z.L.: High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Adv Mater. 23, 5440–5444 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of MEMS of Ministry of EducationSoutheast UniversityNanjingChina

Personalised recommendations