Cluster Computing

, Volume 22, Supplement 1, pp 2309–2316 | Cite as

An automated and intelligent Parkinson disease monitoring system using wearable computing and cloud technology

  • Ahmad AlmogrenEmail author


This paper exhibits the outline and advancement of a pervasive remote monitoring system for the Parkinson’s disease (PD) patients. The proposed system gathers various PD related information such as voice samples, gait information etc. and would empower in-home monitoring of early PD symptoms. We accomplished this objective by utilizing various wearable sensors technology, mobile computing system, Internet, cloud computing technologies. Such an incorporated framework guarantees the compelling and effective utilization of data gathered for evaluating early PD symptom’s as well as identifies critical PD severity levels. In particular, the proposed system can evaluate PD patients’ voice disorders or Dysphonia and thus enables doctors to detect patient’s PD symptoms or severity levels. Trial comes about demonstrate that our proposed system achieves very high accuracy for detecting PD symptoms as compared to existing approaches.


Parkinson disease Intelligent monitoring Wearable computing Cloud computing Classification algorithms 



The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group no (RGP-1437-35).


  1. 1.
    De Lau, L.M., Breteler, M.M.: Epidemiology of Parkinson’s disease. Lancet Neurol. 5(6), 525–35 (2006)CrossRefGoogle Scholar
  2. 2.
    Rispens, S.M., van Schooten, K.S., Pijnappels, M., Daffertshofer, A., Beek, P.J., van Dieën, J.H.: Do extreme values of daily-life gait characteristics provide more information about fall risk than median values? JMIR Res. Protoc. 4(1), e4 (2015).
  3. 3.
    Cancela, J., Pastorino, M., Moreno, E., Waldmeyer, M.A.: A mobile monitoring tool for the automatic activity recognition and its application for Parkinson’s disease rehabilitation. In: World Congress on Medical Physics and Biomedical Engineering, June 7–12, 2015, Toronto, Canada, pp. 1457–1460. Springer, New York (2015)Google Scholar
  4. 4.
    Cancela, J., Pastorino, M., Arredondo, M.T., Nikita, K.S., Villagra, F., Pastor, M.A.: Feasibility study of a wearable system based on a wireless body area network for gait assessment in Parkinson’s disease patients. Sensors 14(3), 4618–4633 (2014)CrossRefGoogle Scholar
  5. 5.
    Caldara, M., Comotti, D., Galizzi, M., Locatelli, P., Re, V., Alimonti, D., Poloni, M., Rizzetti, M.C.: A novel body sensor network for Parkinson’s disease patients rehabilitation assessment. In: 2014 11th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 81–86. IEEE (2014)Google Scholar
  6. 6.
    Patel, S., Chen, B.R., Buckley, T., Rednic, R., McClure, D., Tarsy, D., Shih, L., Dy, J., Welsh, M., Bonato, P.: Home monitoring of patients with Parkinson’s disease via wearable technology and a web-based application. In: 2010 Annual International Conference of the IEEE on Engineering in Medicine and Biology Society (EMBC), pp. 4411–4414. IEEE (2010)Google Scholar
  7. 7.
    Tzallas, A.T., Tsipouras, M.G., Rigas, G., Tsalikakis, D.G., Karvounis, E.C., Chondrogiorgi, M., Psomadellis, F., Cancela, J., Pastorino, M., Waldmeyer, M.T.A., Konitsiotis, S.: PERFORM: a system for monitoring, assessment and management of patients with Parkinson’s disease. Sensors 14(11), 21329–21357 (2014)CrossRefGoogle Scholar
  8. 8.
    Chen, B.R., Patel, S., Buckley, T., Rednic, R., McClure, D.J., Shih, L., Tarsy, D., Welsh, M., Bonato, P.: A web-based system for home monitoring of patients with Parkinson’s disease using wearable sensors. IEEE Trans. Biomed. Eng. 58(3), 831–836 (2011)CrossRefGoogle Scholar
  9. 9.
    Patel, S., Lorincz, K., Hughes, R., Huggins, N., Growdon, J., Standaert, D., et al.: Monitoring motor fluctuations in patients with Parkinson’s disease using wearable sensors. IEEE Trans. Inf. Technol. Biomed. 13(6), 864–873 (2009)CrossRefGoogle Scholar
  10. 10.
    Bächlin, M., Plotnik, M., Roggen, D., Inbar, N., Giladi, N., Hausdorff, J., et al.: Parkinsons disease patients perspective on context aware wearable technology for auditive assistance. In: 2009 3rd International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 1–8 (2009)Google Scholar
  11. 11.
    Cancela, J., Pansera, M., Arredondo, M.T., Estrada, J.J., Pastorino, M., PastorSanz, L., Villalar, J.L.: A comprehensive motor symptom monitoring and management system: the bradykinesia case. In: Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2010, pp. 1008–1011 (2010)Google Scholar
  12. 12.
    Bonato, P., Sherrill, D.M., Standaert, D.G., Salles, S.S., Akay, M.: Data mining techniques to detect motor fluctuations in Parkinson’s disease. In Conference of the IEEE Engineering in Medicine and Biology Society, vol. 7, pp. 4766–4769 (2004)Google Scholar
  13. 13.
    Cunningham, L., Mason, S., Nugent, C., Moore, G., Finlay, D., Craig, D.: Homebased monitoring and assessment of Parkinson’s disease. IEEE Trans. Inf Technol. Biomed. 15(1), 47–53 (2011)CrossRefGoogle Scholar
  14. 14.
    Keijsers Noël, L.W., Horstink Martin, W.I.M., Gielen Stan, C.A.M.: Ambulatory motor assessment in Parkinson’s disease. Mov. Disord. 21(1), 34–44 (2006)CrossRefGoogle Scholar
  15. 15.
    Rodríguez-Molinero, A., Samà, A., Pérez-Martínez, D.A., López, C.P., Romagosa, J., Bayés, À., Sanz, P., Calopa, M., Gálvez-Barrón, C., de Mingo, E., Martín, D.R.: Validation of a portable device for mapping motor and gait disturbances in Parkinson’s disease. JMIR Mhealth Uhealth 3(1), e9 (2015).
  16. 16.
    Pan, D., Dhall, R., Lieberman, A., Petitti, D.B.: A mobile cloud-based Parkinson’s disease assessment system for home-based monitoring. JMIR Mhealth Uhealth 3(1), e29 (2015).
  17. 17.
    Liddle, J., Ireland, D., McBride, S.J., Brauer, S.G., Hall, L.M., Ding, H., Karunanithi, M., Hodges, P.W., Theodoros, D., Silburn, P.A., Chenery, H.J.: Measuring the lifespace of people with Parkinson’s disease using smartphones: proof of principle. JMIR Mhealth Uhealth 2(1), e13 (2014).
  18. 18.
    Fontecha, J., Hervás, R., Bravo, J., Navarro, F.J.: A mobile and ubiquitous approach for supporting frailty assessment in elderly people. J. Med. Internet Res. 15(9), e197 (2013).
  19. 19.
    Eskofier, B.M., Lee, S.I., Baron, M., Simon, A., Martindale, C.F., Gaßner, H., Klucken, J.: An overview of smart shoes in the internet of health things: gait and mobility assessment in health promotion and disease monitoring. Appl. Sci. 7(10), 986 (2017)CrossRefGoogle Scholar
  20. 20.
    Salarian, A., Russmann, H., Vingerhoets, F.J.G., Burkhard, P.R., Aminian, K., Wider, C.: Ambulatory monitoring of physical activities in patients with Parkinson’s disease. IEEE Trans. Biomed. Eng. 54(12), 2296–2299 (2007)CrossRefGoogle Scholar
  21. 21.
    Al Mamun, K.A., Alhussein, M., Sailunaz, K., Islam, M.S.: Cloud based framework for Parkinson’s disease diagnosis and monitoring system for remote healthcare applications. Future Gener. Comput. Syst. 31(66), 36–47 (2017)CrossRefGoogle Scholar
  22. 22.
    Tsiouris, K.M., Gatsios, D., Rigas, G., Miljkovic, D., Seljak, B.K., Bohanec, M., Arredondo, M.T., Antonini, A., Konitsiotis, S., Koutsouris, D.D., Fotiadis, D.I.: PD_Manager: an mHealth platform for Parkinson’s disease patient management. Healthc. Technol. Lett. 4(3), 102–108 (2017)CrossRefGoogle Scholar
  23. 23.
    van den Noort, J.C., Verhagen, R., van Dijk, K.J., Veltink, P.H., Vos, M.C., de Bie, R.M., Bour, L.J., Heida, C.T.: Quantification of hand motor symptoms in Parkinson’s disease: A proof-of-principle study using inertial and force sensors. Ann. Biomed. Eng. 45(10), 2423–2436 (2017)CrossRefGoogle Scholar
  24. 24.
    Lin, B.S., Chou, N.K., Chong, F.C., Chen, S.J.: RTWPMS: a realtime wireless physiological monitoring system. IEEE Trans. Inf. Technol. Biomed. 10(4), 647–656 (2006)CrossRefGoogle Scholar
  25. 25.
    Jin, Z., Oresko, J., Huang, S., Cheng, A.C.: HeartToGo: a personalized medicine technology for cardiovascular disease prevention and detection. In: Proceedings of the IEEE/NIH LiSSA, Bethesda, 9 Apr 2009, pp. 80–83Google Scholar
  26. 26.
    Pantelopoulos, A., Bourbakis, N.: A survey on wearable sensorbased systems for health monitoring and prognosis. IEEE Trans. Syst. Man. Cybern. C 40(1), 1–12 (2010). CrossRefGoogle Scholar
  27. 27.
    Galán-Mercant, A., Cuesta-Vargas, A.I.: Differences in trunk accelerometry between frail and nonfrail elderly persons in sit-to stand and stand-to-sit transitions based on a mobile inertial sensor. JMIR Mhealth Uhealth 1(2), e21 (2013).
  28. 28.
    Almashaqbeh, G., Hayajneh, T., Vasilakos, A.V., Mohd, B.J.: QoS-aware health monitoring system using cloud-based WBANs. J. Med. Syst. 38(10), 121 (2014)CrossRefGoogle Scholar
  29. 29.
    Hassanalieragh, M., Page, A., Soyata, T., Sharma, G., Aktas, M., Mateos, G., Kantarci, B., Andreescu, S. Health monitoring and management using Internet-of-Things (IoT) sensing with cloud-based processing: Opportunities and challenges. In: 2015 IEEE International Conference on Services Computing (SCC), pp. 285–292. IEEE (2015)Google Scholar
  30. 30.
    Almogren, A.: Developing a powerful and resilient smart body sensor network through hypercube interconnection. Int. J. Distrib. Sens. Netw. Article Number: 609715, Open Access (2015)Google Scholar
  31. 31.
    Asuncion, A., Newman, D.: UCI machine learning repository. School of Information and Computer Science, University of California, Irvine. (2009)
  32. 32.
    Singhal, S., Jena, M.: A study on WEKA tool for data preprocessing, classification and clustering. Int. J. Innov. Technol. Explor. Eng. 2(6), 250–253 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Computer and Information SciencesKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations