Cluster Computing

, Volume 22, Supplement 5, pp 11659–11668 | Cite as

Twin background model for foreground detection in video sequence

  • S. JeevaEmail author
  • M. Sivabalakrishnan


The realm of video surveillance has various methods to extract foreground. Background subtraction is one of the prime methods for automatic video analysis. The sensitivity of a meaningful event of interest is increased due to dampening effect of background changes and detection of false alarm. Hence the model can be strongly recommended to industries. This paper restricts the focus to one of the most common causes of dynamic background changes: that of swaying trees branches and illumination changes. To overcome the issue available in existing system, we propose a method called as twin background modeling. This method has dual models namely long and short term background models to increase exposure rate of foreground by using statistical method and also reduce false negative rate. This method has dimensional transformation from 2D to 1D which reduces computation time of the system and increases batch processing. The proposed method uses Manhattan distance to reduce execution time, increase detection rate and reduce error rate. The performance of the suggested approach is illustrated by using change detection dataset 2014 and is compared to other conventional approaches.


Change detection Background subtraction Foreground segmentation Video surveillance Video signal processing Video analytics 


  1. 1.
    Qin, L., Sheng, B., Lin, W., Wu, W., Shen, R.: GPU-accelerated video background subtration using Gabor detector. Proced. Comput. Sci. 32, 1–10 (2015)Google Scholar
  2. 2.
    Kavitha, K., Tejaswini, A.: Background detection and subtraction for image sequences in video. Int. J. Comput. Sci. Inf. Technol. 3(5), 5223–5226 (2012)Google Scholar
  3. 3.
    Bouwmans, T.: Traditional and recent approaches in background modeling for foreground detection: an overview. Comput. Sci. Rev. 11–12, 31–66 (2014)CrossRefGoogle Scholar
  4. 4.
    Jeeva, S., Sivabalakrishnan, M.: Survey on background modeling and foreground detection for real time video surveillance. Proced. Comput. Sci. 50, 566–571 (2015)CrossRefGoogle Scholar
  5. 5.
    Bouwmans, T.: Recent advanced statistical background modeling for foreground detection: a systematic survey. Recent Pat. Comput. Sci. 4(3), 147–171 (2011)Google Scholar
  6. 6.
    Bouwmans, T., Shan, C., Piccardi, M., Davis, L.: Special issue on background modeling for foreground detection in real-world dynamic scenes. Mach. Vis. Appl. 25(5), 1101–1103 (2014)CrossRefGoogle Scholar
  7. 7.
    Radke, R., Andra, S., Al-Kofahi, O., Roysam, B.: Image change detection algorithms: a systematic survey. IEEE Trans. Image Process. 14(3), 294–307 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Faro, A., Giordano, D., Spampinato, C.: Adaptive background modeling integrated with luminosity sensors and occlusion processing for reliable vehicle detection. IEEE Trans. Intell. Transp. Syst. 12(4), 1398–1412 (2011)CrossRefGoogle Scholar
  9. 9.
    Barnichsz, O., Van Droogenbroeck, M.: ViBe: A universal background subtraction algorithm for video sequences. IEEE Trans. Image Process. 20(6), 1709–1724 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Van Droogenbroeck, M., Paquot, O.: Background subtraction: experiments and improvements for ViBe. In: Change Detection Workshop (CDW), vol. 6. (2012)Google Scholar
  11. 11.
    St-Charles, P.L., Bilodeau, G.A., Bergevin, R.: SuBSENSE: a universal change detection method with local adaptive sensitivity. IEEE Trans. Image Process. 24(1), 359–373 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Barnich, O., Van Droogenbroeck, M.: ViBe: a powerful random technique to estimate the background in video sequences. In: IEEE sponsored ICASSP-2009, No: 978-1-4244-2354-5Google Scholar
  13. 13.
    Shah, M., Deng, J.D., Woodford, B.J.: Video background modeling: recent approaches, issues and our proposed techniques. Mach. Vis. Appl. 25(5), 1105–1119 (2014)CrossRefGoogle Scholar
  14. 14.
    Dou, J., Li, J.: Moving object detection based on improved ViBe and graph cut optimization. Optik 124, 6081–6088 (2013)CrossRefGoogle Scholar
  15. 15.
    Jevnisek, R.J., Avidan, S.: Semi global boundary detection. Comput. Vis. Image Underst. 152, 21–28 (2016)CrossRefGoogle Scholar
  16. 16.
    Wen, J., Lai, Z., Zhan, Y., Cui, J.: The $L2,1$-norm-based unsupervised optimal feature selection with applications to action recognition. Pattern Recognit. 60, 515–530 (2016)CrossRefGoogle Scholar
  17. 17.
    Wang, B., Dudek, P.: A fast self-tuning background subtraction algorithm. In: Proceedings of the IEEE Conference on CVPR Workshops, pp. 401–404 (2014)Google Scholar
  18. 18.
    Maddalena, L., Petrosino, A.: A fuzzy spatial coherence-based approach to background / foreground separation for moving object detection. Neural Comput. Appl. 19(2), 179–186 (2010)CrossRefGoogle Scholar
  19. 19.
    Lee, D.-S.: Effective Gaussian mixture learning for video background subtraction. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 827–832 (2005)CrossRefGoogle Scholar
  20. 20.
    Yang, M.-H., Huang, C.-R., Liu, W.-C., Lin, S.-Z., Chuang, K.-T.: Binary descriptor based nonparametric background modeling for foreground extraction by using detection theory. IEEE Trans. Circuits Syst. Video Technol. 25(4), 595–608 (2015)CrossRefGoogle Scholar
  21. 21.
    Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.: Real-time foreground-background segmentation using codebook model. Real-Time Imaging 11(3), 172–185 (2005)CrossRefGoogle Scholar
  22. 22.
    Jeeva, S., Sivabalakrishnan, M.: Robust background subtraction for real time video processing. Int. J. Pure. Appl. Math. 109(5), 117–124 (2016)Google Scholar
  23. 23.
    Goyette, N., Jodoin, P.M., Porikli, F., Konrad, J., Ishwar, P.: A novel video dataset for change detection benchmarking. IEEE Trans. Image Process. 23(11), 4663–4679 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Xu, Y., Dong, J., Zhang, B., Xu, D.: Background modeling methods in video analysis: a review and comparative evaluation. CAAI Trans. Intell. Technol 1, 43–60 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Computing Science and EngineeringVIT University-Chennai CampusChennaiIndia

Personalised recommendations