Cluster Computing

, Volume 22, Supplement 3, pp 5647–5654 | Cite as

Lossy trapdoor functions based on the PLWE

  • Chengli ZhangEmail author
  • Wenping Ma
  • Hefeng Chen
  • Feifei Zhao


In 2011, Chris Peikert and Brent Waters proposed the concept of lossy trapdoor functions, which is an inherent and powerful cryptographic concept. Lossy trapdoor functions can be used for simple black-box constructing CCA encryption schemes, collision-resistent hash functions and oblivious transfer schemes. Chris Peikert and Brent Waters constructed lossy trapdoor functions based on decisional Diffie–Hellman assumption and learning with errors problem separately, which can be generalized to all-but-one trapdoor functions. In this paper, we generalize the lossy trapdoor functions and all-but-one trapdoor functions based on the polynomial ring separately, and we construct two types of trapdoor functions based on polynomial learning with errors assumption, which have more throughput and efficiency.


Lattices Lossy trapdoor functions All-but-one trapdoor functions Polynomial learning with errors 



This work is supported by the National Science Foundation of China under Grant 61373171 and the 111 Project under Grant B08038.


  1. 1.
    Lehman, R.S.: Factoring large integers. Math. Comput. 28(126), 637–646 (1974)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Wagstaff, S.S., Smith, J.W.: Methods of factoring large integers. Lect. Notes Math. 1240, 261–303 (1987)MathSciNetGoogle Scholar
  3. 3.
    Silverman, R.D.: Massively distributed computing and factoring large integers. Commun. ACM. 34(11), 95–103 (1991)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Shamir, A.: Factoring large numbers with the TWINKLE device. In: Koc, C.K., Paar, C. (eds.) Cryptographic Hardware and Embedded Systems, pp. 727–727. Springer, Berlin (1999)Google Scholar
  5. 5.
    Boneh, D.: Twenty years of attacks on the RSA cryptosystem. Not. AMS. 46(2), 203–213 (1999)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Miller, V.S.: Use of elliptic curves in cryptography. In: Conference on the Theory and Application of Cryptographic Techniques, pp. 417–426. Springer, Berlin (1985)Google Scholar
  7. 7.
    Maurer, U.: Towards the equivalence of breaking the Diffie-Hellman protocol and computing discrete logarithms. In: Desmedt, Y.G. (ed.) Advances in cryptology—CRYPTO94, pp. 271–281. Springer, Berlin (1994)Google Scholar
  8. 8.
    Shoup, V.: Lower bounds for discrete logarithms and related problems. Eurocrypt 97, 256–266 (1997)MathSciNetGoogle Scholar
  9. 9.
    Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing. ACM, pp. 99–108 (1996)Google Scholar
  10. 10.
    Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing. ACM, pp. 601–610 (2001)Google Scholar
  11. 11.
    Kuznetsov, S.O.: On computing the size of a lattice and related decision problems. Order 18(4), 313–321 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Pujol, X., Stehl, D.: Solving the shortest lattice vector problem in time 22.465 n. IACR Cryptol. ePrint. Arch. 2005, 605 (2009)Google Scholar
  13. 13.
    Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. SIAM J. Comput. 40(6), 1803–1844 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theory Comput. Syst. 48(3), 535–553 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) Advances in Cryptology—EUROCRYPT 2012. Springer, Berlin, pp. 700–718 (2012)CrossRefGoogle Scholar
  16. 16.
    Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) Automata, Languages and Programming. Springer, Berlin, pp. 1–9 (1999)Google Scholar
  17. 17.
    Cheng, S., Nguyen, K., Wang, H.: Policy-based signature scheme from lattices. Des. Codes Cryptogr. 81(1), 1–32 (2015)MathSciNetGoogle Scholar
  18. 18.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing. ACM 2008, 197–206 (2008)Google Scholar
  19. 19.
    Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. J. ACM. 60(6), 43 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography. In: Johansson, T., Nguyen, P.Q. (eds.) Advances in Cryptology—EUROCRYPT 2013. Springer, Berlin, pp. 35–54 (2013)CrossRefGoogle Scholar
  21. 21.
    Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. SIAM J. Comput. 39(7), 3058–3088 (2010)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Alwen, J., Krenn, S., Pietrzak, K., et al.: Learning with rounding, revisited. In: Canetti, R., Garay, J.A. (eds.) Advances in Cryptology—CRYPTO 2013. Springer, Berlin, pp. 57–74 (2013)CrossRefGoogle Scholar
  23. 23.
    Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent message. In: Rogaway, P. (ed.) Advances in Cryptology—CRYPTO 2011. Springer, Berlin, pp. 505–524 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Chengli Zhang
    • 1
    Email author
  • Wenping Ma
    • 1
  • Hefeng Chen
    • 2
  • Feifei Zhao
    • 1
  1. 1.State Key Laboratory of Integrated Services NetworksXidian UniversityXi’anPeople’s Republic of China
  2. 2.Computer Engineering CollegeJimei UniversityXiamenPeople’s Republic of China

Personalised recommendations