Cluster Computing

, Volume 22, Supplement 5, pp 11047–11055 | Cite as

Secure error-correcting (SEC) schemes for network coding through McEliece cryptosystem

  • Guangzhi ZhangEmail author
  • Shaobin Cai


The McEliece cryptosystem based on rank-metric codes is presented to offer both security and error-correction simultaneously in random network coding system. In the multicast network, the original messages are encoded with McEliece cryptosystem based on Gabidulin codes. Key distribution will be done one time. The rank codes decoding is performed in the sink. As long as \(t < {d_R}\left( C \right) /2\), the decoding is guaranteed, where t is the number of corrupted packets and \({d_R}\left( C \right) \) is the minimum rank distance of the rank codes C. Original messages are protected based on the cryptosystem. Compared with the rate \(\mathrm{{n}} - \mu - 2t\) in traditional SEC network codes, the rate approaches \(\mathrm{{n}} - 2t\) where \(\mu \) is the number of eavesdroppers. The rate won’t decrease as the number of eavesdropped edges increases.


Security and error-correction Network coding Gabidulin codes Subspace distance McEliece cryptosystem 



This work is supported by Suihua technology office program (SHKJ2015-015, SHKJ2015-014 ), National Science foundation of China (61571150), Education Office of Heilongjiang province science and technology program (2016-KYYWF-0937), Suihua university program (K1502003).


  1. 1.
    Du, W.Z., Wang, X.M.: One kind of secret code encryption scheme based on maximum rank distance codes. Chin. J. Comput. 6, 650–653 (2001)MathSciNetGoogle Scholar
  2. 2.
    Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-commutative ring and their application in cryptology. Springer, Berlin (1991)CrossRefGoogle Scholar
  3. 3.
    Gibson, J.K.: Severely denting the gabidulin version of the mceliece public key cryptosystem. Des. Codes Cryptogr. 6(1), 37–45 (1995)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Islam, M.S., Kim, J.M.: Gpu-based fast error recovery for high speed data communication in media technology. Clust. Comput. 18(1), 93–101 (2015)CrossRefGoogle Scholar
  5. 5.
    Jaggi, S., Langberg, M., Katti, S., Ho, T., Katabi, D., Medard, M.: Resilient network coding in the presence of byzantine adversaries. In: INFOCOM 2007. IEEE International Conference on Computer Communications, pp. 616–624. IEEE (2007)Google Scholar
  6. 6.
    Kliazovich, D., Bouvry, P., Khan, S.U.: Dens: data center energy-efficient network-aware scheduling. Clust. Comput. 16(1), 65–75 (2013)CrossRefGoogle Scholar
  7. 7.
    Mceliece, R.J.: A public-key cryptosystem based on algebraic. Coding Theor. 4244, 114–116 (1978)Google Scholar
  8. 8.
    Oliveira, P.F., Barros, J.: A network coding approach to secret key distribution. IEEE Trans. Inf. Forensics Secur. 3(3), 414–423 (2008)CrossRefGoogle Scholar
  9. 9.
    Overbeck, R.: A new structural attack for gpt and variants. In: International Conference on Cryptology in Malaysia, pp. 50–63 (2005)Google Scholar
  10. 10.
    Overbeck, R.: Structural attacks for public key cryptosystems based on gabidulin codes. J. Cryptol. 21(2), 280–301 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Puchinger, S., Wachter-Zeh, A.: Sub-quadratic decoding of gabidulin codes. In: IEEE International Symposium on Information Theory (2016)Google Scholar
  12. 12.
    Rashwan, H., Gabidulin, E.M., Honary, B.: Security of the gpt cryptosystem and its applications to cryptography. Secur. Commun. Netw. 4(8), 937–946 (2011)CrossRefGoogle Scholar
  13. 13.
    Silva, D.: On network error correction under a secret key model. In: IEEE International Symposium on Information Theory Proceedings, pp. 2656–2660 (2011)Google Scholar
  14. 14.
    Silva, D., Kschischang, F.R.: Security for wiretap networks via rank-metric codes. In: IEEE International Symposium on Information Theory, pp. 176–180 (2007)Google Scholar
  15. 15.
    Silva, D., Kschischang, F.R.: On metrics for error correction in network coding. IEEE Trans. Inf. Theor. 55(12), 5479–5490 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Silva, D., Kschischang, F.R.: Universal secure error-correcting schemes for network coding. In: IEEE International Symposium on Information Theory Proceedings, pp. 2428–2432 (2010)Google Scholar
  17. 17.
    Silva, D., Kschischang, F.R., Koetter, R.: A rank-metric approach to error control in random network coding. IEEE Trans. Inf. Theor. 54(9), 3951–3967 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Talooki, V.N., Bassoli, R., Lucani, D.E., Rodriguez, J., Fitzek, F.H.P., Marques, H., Tafazolli, R.: Security concerns and countermeasures in network coding based communication systems: a survey. Comput. Netw. 83, 422–445 (2015)CrossRefGoogle Scholar
  19. 19.
    Wang, L., Yang, Z., Xu, L., Yang, Y.: Ncvcs: network-coding-based video conference system for mobile devices in multicast networks. Ad Hoc Netw. 45, 13–21 (2016)CrossRefGoogle Scholar
  20. 20.
    Wu, T., Somani, A.K.: Attack monitoring and localization in all-optical networks. Clust. Comput. 9(4), 465–473 (2006)CrossRefGoogle Scholar
  21. 21.
    Yu, Z., Wei, Y., Ramkumar, B., Guan, Y.: An efficient scheme for securing XOR network coding against pollution attacks. In: INFOCOM, pp. 406–414 (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Computer Science DepartmentHarbin Engineering UniversityHarbinChina
  2. 2.Suihua UniversitySuihuaChina

Personalised recommendations