Advertisement

Cluster Computing

, Volume 22, Supplement 3, pp 5397–5406 | Cite as

Outage probability of SSTS for distributed antenna systems over Rayleigh fading channels in multi-cell environment

  • Sitong LvEmail author
  • Zhihong Qian
  • Yuxi Liu
Article
  • 83 Downloads

Abstract

In this paper, downlink outage probability for distributed antenna systems (DAS) in multicell environment is proposed, while based on maximum desired signal criterion, a single selection transmission scheme (SSTS) is proposed. Usually, adopting central limit theorem (CLT) method, the component of interference plus noise is considered as a fixed-variance Gaussian random variable in most papers. However, the aforementioned method does not reflect the effect of short-term fading on interference and its usage is in the constraints of restrictive conditions. To relax the constraints, non-central limit theorem (NCLT) is introduced, which treats the variance of interference plus noise as a changeable-variance random variable influenced by short-term fading. It is assumed that channels are independent identical Rayleigh fading with propagation path-loss, and the closed-form expression of outage probability for DAS is derived. Finally, simulation results demonstrate the validity of theoretical analysis.

Keywords

Distributed antenna systems Outage probability Single selection transmission scheme (SSTS ) Non-central limit theorem 

References

  1. 1.
    Kim, H., Lee, S.R., Song, C., Lee, K.J., Lee, I.: Optimal power allocation scheme for energy efficiency maximization in distributed antenna systems. IEEE Transact. Commun. 63(2), 431–440 (2015)CrossRefGoogle Scholar
  2. 2.
    Heath, R., Peters, S., Wang, Y., Zhang, J.: A current perspective on distributed antenna systems for the downlink of cellular systems. IEEE Commun. Mag. 51(4), 161–167 (2013)CrossRefGoogle Scholar
  3. 3.
    Feng, W., Ge, N., Lu, J.: Hierarchical transmission optimization for massively dense distributed antenna systems. IEEE Commun. Lett. 19(4), 673–676 (2015)CrossRefGoogle Scholar
  4. 4.
    You, X.H., Wang, D.M., Sheng, B., Gao, X.Q., Zhao, X.S.: Cooperative distributed antenna systems for mobile communications [coordinated and distributed MIMO]. IEEE Wireless Commun. 17, 35–43 (2010)CrossRefGoogle Scholar
  5. 5.
    Lee, S.-R., Moon, S.-H., Kong, H.-B., Lee, I.: Optimal beamforming schemes and its capacity behavior for downlink distributed antenna systems. IEEE Trans. Wireless Commun. 12(6), 2578–2587 (2013)CrossRefGoogle Scholar
  6. 6.
    Ren, H., Liu, N., Pan, C., He, C.: Energy efficiency optimization for mimo distributed antenna systems. IEEE Transact. Veh. Technol. 66(3), 2276–2288 (2017)CrossRefGoogle Scholar
  7. 7.
    Saleh, A., Rustako, A.J., Roman, R.S.: Distributed antennas for indoor radio communications. IEEE Trans. Commun. 35(12), 1245–1251 (1987)CrossRefGoogle Scholar
  8. 8.
    Choi, W., Andrews, J.G.: Downlink performance and capacity of distributed antenna systems in a multicell environment. IEEE Trans. Wireless Commun. 6(1), 69–73 (2007)CrossRefGoogle Scholar
  9. 9.
    Zhou, S., Zhao, M., Xu, X., Wang, J.: Distributed wireless communication systems: a new architecture for future public wireless access. IEEE Commun. Mag. 41(3), 108–113 (2003)CrossRefGoogle Scholar
  10. 10.
    Zhu, H.L.: Performance comparison between distributed antenna and microcellular systems. IEEE J. Sel. Areas Commun. 29(6), 1151–1163 (2011)CrossRefGoogle Scholar
  11. 11.
    Nosratinia, A., Hunter, T.E., Hedayat, A.: Cooperative communication in wireless networks. IEEE Commun. Mag. 42(10), 74–80 (2004)CrossRefGoogle Scholar
  12. 12.
    Katranaras, E., Imran, M.A., Tzaras, C.: Uplink capacity of a variable density cellular system with multicell processing. IEEE Trans. Commun. 57(7), 2098–2108 (2009)CrossRefGoogle Scholar
  13. 13.
    You, X., Wang, D., Zhu, P., Sheng, B.: Cell edge performance of cellular mobile systems. IEEE J. Sel. Areas Commun. 29(6), 1139–1150 (2011)CrossRefGoogle Scholar
  14. 14.
    Park, J., Song, E., Sung, W.: Capacity analysis for distributed antenna systems using cooperative transmission schemes in fading channels. IEEE Trans. Wireless Commun. 8(2), 586–592 (2009)CrossRefGoogle Scholar
  15. 15.
    Liu, Y.X., Liu, J., Chen, H., Zheng, L.N., Zhang, G.W., Guo, W.D.: Downlink performance of distributed antenna systems in multicell environment. IET Commun. 5(15), 2141–2148 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Choi, W., Andrews, J.G.: Theoretical limits of cellular systems with distributed antennas. In: Hu, H.L., Zhang, Y., Luo, J.J. (eds.) Distributed Antenna Systems: Open Architecture for Future Wireless Communications, pp. 65–86. Auerbach Press, Berlin (2007)Google Scholar
  17. 17.
    Vereecken, W., Heddeghem, W.V., Deruyck, M., Puype, B., Lannoo, B., Joseph, W., Colle, D., Martens, L., Demeester, P.: Power consumption in telecommunication networks: overview and reduction strategies. IEEE Commun. Mag. 49(3), 62–69 (2011)CrossRefGoogle Scholar
  18. 18.
    Liu, Y.X., Liu, J., Guo, W.D., Chen, H., Zheng, D., Zhang, G.W.: Downlink performance analysis of distributed antenna systems. In: Proceedings of the IEEE International Conference on Wireless Communication and Signal Processing, pp. 1–5. Nanjing (2011)Google Scholar
  19. 19.
    Liu, Y.X., Chen, P., Ouyang, H., Fang, H.W.: Bit error rate of SSTS for downlink distributed antenna systems in multicell environment. Wireless Pers. Commun. 31(3), 1063–1078 (2015)CrossRefGoogle Scholar
  20. 20.
    Wyner, A.: Shannon-theoretic approach to a Gaussian cellular multiple-access channel. IEEE Trans. Inf. Theory 40(6), 1713–1727 (1994)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Zhang, H., Dai, L., Xiao, L., Yao, Y.: Spectral efficiency of distributed antenna system with random antenna layout. Electron. Lett. 39(6), 495–496 (2003)CrossRefGoogle Scholar
  22. 22.
    Wang, X., Zhu, P., Chen, M.: Antenna location design for generalized distributed antenna systems. IEEE Commun. Lett. 13(5), 315–317 (2009)CrossRefGoogle Scholar
  23. 23.
    Zhang T., Zhang C., Cuthbert L., Chen Y.: Energy efficient antenna deployment design scheme in distributed antenna systems. In: Proceedings of the IEEE International 72nd Vehicular Techology Conference, pp. 1–5. Spring (VTC 2010-Fall), Ottawa, (2010)Google Scholar
  24. 24.
    Zhang W., Diao C., Zhao M., Chen M.: Impact of path loss exponents on antenna location design for GDAS. In: Proceedings of the IEEE International 75nd Vehicular Techology Conference, pp. 1–5. Spring VTC 2012-Spring, Yokohama (2012)Google Scholar
  25. 25.
    Chen, H.M., Wang, J.B., Chen, M.: Outage performance of distributed antenna systems over shadowed Nakagami-m fading channels. Eur. Trans. Telecommun. 20(5), 531–535 (2009)CrossRefGoogle Scholar
  26. 26.
    Chen, H., Liu, J., Zheng, L.N., Zhai, C., Zhou, Y.: Approximate SEP analysis for DF cooperative networks with opportunistic relaying. IEEE Signal Process. Lett. 17(9), 777–780 (2010)CrossRefGoogle Scholar
  27. 27.
    Simon, M.K., Alouini, M.S.: Digital Communication Over Fading Channels: A Unified Approach to Performance Analysis, pp. 99–140. Wiley, New Jersey (2000)CrossRefGoogle Scholar
  28. 28.
    Gradshteyn, I., Ryzhik, I.: Table of Integrals, Series, and Products. Academic Press, New York (2003)zbMATHGoogle Scholar
  29. 29.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1970)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Jilin UniversityChangchunChina
  2. 2.Aviation University of AirForceJilinChina
  3. 3.State Grid Information and Telecommunication Group Co., Ltd.BeijingChina

Personalised recommendations