Cluster Computing

, Volume 22, Supplement 6, pp 13085–13094 | Cite as

Novel effective X-path particle swarm optimization based deprived video data retrieval for smart city

  • S. Thanga Ramya
  • Bhuvaneshwari ArunagiriEmail author
  • P. Rangarajan


With the tremendous increase in low resolution videos on video sharing websites, retrieval of a correct video becomes a tougher task. The existing methods provide retrieval approaches based on minimum number of features comparison. It leads to an inefficient video retrieval. Most researches had concentrated on tracking ability and conversion of low resolution to high resolution videos. These methods failed to provide fast retrieval of videos from large databases. The proposed work is concentrated mostly on riot videos from large video repositories to identify the previous criminal records in a particular region of the smart city (Cocchia in Smart and digital city: a systematic literature review, Springer International Publishing, Switzerland, 2014; Pardo and Taewoo in Proceedings of the 12th annual international conference on digital government research, ACM, New York, 2011). It uses certain combination ofobject oriented features like object and camera motion feature, color histogram and edge detection technique. In the proposed retrieval process, the key frames are extracted from the original video instead of using the whole video information for retrieval process. Object Oriented features were then extracted from these key frames and saved in database. Then, the retrieval process is done by searching the availability of relevant Object Oriented values based on the query submitted by the user. Thus the combination of four different features provides an efficient retrieval of low resolution videos from the database. The retrieved video may include redundant information in the projected work. To avoid such redundancy, particle swarm optimization (PSO) is used. The result of query video is compared with database video using degree of closeness measurement. Consequently, low resolution video retrieval based on PSO seems to be encouraging in terms of its performance in extracting videos than existing retrieval approaches.


Video retrieval Particle swarm optimization Videos Database Video attributes Smartcity 



Thanga Ramya S. would like to thank Dr. Rangarajan P. (Computer Science and Engineering, RMD Engineering College) for his very helpful comments and proofreading of this article.


  1. 1.
    Cocchia, A.: Smart and Digital City: A Systematic Literature Review, pp. 13–42. Springer International Publishing, Switzerland (2014). doi: 10.1007/978-3-319-06160-3_2 CrossRefGoogle Scholar
  2. 2.
    Pardo, T., Taewoo, N. :Conceptualizing smart city with dimensions of technology, people, and institutions. In: Proceedings of the 12th Annual International Conference on Digital Government Research, pp. 282–291. ACM, New York (2011)Google Scholar
  3. 3.
    Money, G., Agius, A.H.: Video summarisation: a conceptual framework and survey of the state of the art. J. Vis. Commun. Image Represent. 19, 121–143 (2008). doi: 10.1016/j.jvcir.2007.04.002G CrossRefGoogle Scholar
  4. 4.
    Li, Y., Zhang, T., Tretter, D. : An Overview of Video Abstraction Techniques. Tech. Rep., HP-2001-191, HP Laboratory (2001)Google Scholar
  5. 5.
    Doulamis, A.D., Doulamis, N.D., Kollias, S.D.: A fuzzy video content representation for video summarization and content-based retrieval. Signal Process. 80, 1049–1067 (2000)CrossRefGoogle Scholar
  6. 6.
    Yu, J., Seah, H.S.: Fuzzy diffusion distance learning for cartoon similarity estimation. J. Comput. Sci. Technol. 26, 203–216 (2011). doi: 10.1007/s11390-011-9427-4 CrossRefzbMATHGoogle Scholar
  7. 7.
    Zhang, H.J., Wu, J.H., Zhong, D., Smoliar, S.W.: An integrated system for content-based video retrieval and browsing. Pattern Recognit. 30, 643–658 (1997)CrossRefGoogle Scholar
  8. 8.
    Calic, J., Izquierdo, E.: Efficient key-frame extraction and video analysis. In: Proceedings of the International Conference on Information Technology: Coding and Computing. doi: 10.1109/ITCC.2002.1000355 (2002)
  9. 9.
    Shahraray, B., Gibbon, D.C. : Automatic generation of pictorial transcripts of video programs. In: SPIE Proceedings of Multimedia Computing and Networking, p. 2417 (1995)Google Scholar
  10. 10.
    Divakaran, A., Regunathan, R., Peker, K.A.: Video summarization using descriptors of motion activity: a motion activity based approach to key-frame extraction from video shots. J. Electron. Imaging 10, 909–916 (2001). doi: 10.1117/1.1406507 CrossRefGoogle Scholar
  11. 11.
    Yeung, M.M., Liu, B.: Efficient matching and clustering of video shots. In: Proceedings of International Conference on Image Processing, Washington DC 23–26, 338–341. doi: 10.1109/icip.1995.529715 (1995)
  12. 12.
    Sun, X., Kankanhalli, M.S., Zhu, Y., Wu, J. : Content-based representative frame extraction for digital video. In: Proceedings of IEEE International Conference on Multimedia Computing and Systems, Austin, 28 June-1 July 1998, 190–193 (1998)Google Scholar
  13. 13.
    Wolf, W.: Key frame selection by motion analysis. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Atlanta 7–10, 1228–1231. doi: 10.1109/icassp.1996.543588 (1996)
  14. 14.
    Divakaran, A., Sun, H.: Descriptor for spatial distribution of motion activity for compressed video. Proc. SPIE on Storage Retrieval Media Databases 3972, 24–28 (2000)Google Scholar
  15. 15.
    Shanmugavadivu, P., Sumathy, P., Vadivel, A.: FOSIR: fuzzy-object-shape for image retrieval applications. Neurocomputing 171, 719–735 (2016)CrossRefGoogle Scholar
  16. 16.
    Petkovic, M., Jonker, W.: Content-Based Video Retrieval: A Database Perspective. Springer, New York (2004). doi: 10.1007/978-1-4757-4865-9 CrossRefzbMATHGoogle Scholar
  17. 17.
    Fayk, M.B., Nemr, H.A.E., Moussa, M.M.: Particle swarm optimisation based video abstraction. J. Adv. Res. 1, 163–167 (2010). doi: 10.1016/j.jare.2010.03.009 CrossRefGoogle Scholar
  18. 18.
    Hu, W., Xie, N., Li, L., Zeng, X., Maybank, S.: A survey on visual content-based video indexing and retrieval. IEEE Trans. Syst. Man Cybern. 41, 797–819 (2011). doi: 10.1109/TSMCC.2011.2109710 CrossRefGoogle Scholar
  19. 19.
    Truong, B.T., Venkatesh, S., Dorai, A.C.: Scene extraction in motion pictures. IEEE Trans. Circuits Syst. Video Technol. 13, 5–15 (2003). doi: 10.1109/TCSVT.2002.808084 CrossRefGoogle Scholar
  20. 20.
    Narasimha, R., Savakis, A., Rao, R.M., Queiroz, R.: A neural network approach to key frame extraction. Storage Retrieval Methods Appl. Multimedia 5307, 439–447 (2004)Google Scholar
  21. 21.
    Ciocca, G., Schettini, R.: An innovative algorithm for key frame extraction in video summarization. J. Real-Time Image Process. 1, 69–88 (2006). doi: 10.1007/s11554-006-0001-1 CrossRefGoogle Scholar
  22. 22.
    Pan, W., Deschenes, F. : Interpreting camera operations in the context of content-based video indexing and retrieval. In: Proceedings of the 3rd Canadian Conference on Computer and Robot Vision (2006)Google Scholar
  23. 23.
    Yeung, M.M., Li, C.-S.: Motion feature extraction scheme for content-based video retrieval. Proc. SPIE 4676, 296–305 (2002)CrossRefGoogle Scholar
  24. 24.
    Heikkila, M., Pietikainen, M.: A texture-based method \(\cdot \cdot \) for modeling the background and detecting moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 28, 657–662 (2006)CrossRefGoogle Scholar
  25. 25.
    Wang, Z., Li, X., Zhang, D., Wu, F.: A PSO-based web document query optimization algorithm. LNCS 4185, 609–615 (2006). doi: 10.1007/11836025_59 CrossRefGoogle Scholar
  26. 26.
    Darsana, B., Jagajothi, G.: Distributed retrieval of images using particle swarm optimization and hadoop. Int. J. Comput. Appl. (2013)Google Scholar
  27. 27.
    Salahuddin, A., Naqvi, A., Murtaza, K.: Content based video retrieval using particle swarm optimization. In: 10th IEEE International Conference on Frontiers of Information Technology (FIT). J. Islamabad 17–19, 79–83 (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • S. Thanga Ramya
    • 1
  • Bhuvaneshwari Arunagiri
    • 2
    Email author
  • P. Rangarajan
    • 3
  1. 1.Department of Information TechnologyRMD Engineering CollegeChennaiIndia
  2. 2.Department of Information TechnologyAdhiparasakthi Engineering CollegeMelmaruvathurIndia
  3. 3.Department of Computer Science and EngineeringRMD Engineering CollegeChennaiIndia

Personalised recommendations