Advertisement

Cluster Computing

, Volume 22, Supplement 6, pp 13055–13065 | Cite as

Channel assignment based coding mechanism for reliable transmission for smart cities

  • Ramkumar JayaramanEmail author
  • Gunasekaran Raja
Article

Abstract

The broadband wireless network provides an efficient solution for both data reliability and network congestion to meet the demand of the increasing number of mobile users. However, due to dense deployment of nodes, interference and data dissemination problems occur which result in unreliable packet delivery during data transmission in smart cities. All this creates problem in efficient data transmission. In order to solve this problem, in this work, we propose a novel Code-Encoding and Decoding (C-ED) mechanism for IEEE 802.16 networks that helps to mitigate the problem of data dissemination by using minimal number of channels. The proposed C-ED mechanism provides a reliable packet delivery during multicast transmission. As the smart cities are connected with complex networks, our scheme utilizes the existing channel assignment strategies to assign a minimal number of channels to the network and transmit the data using the proposed C-ED mechanism. To illustrate the effectiveness of the proposed C-ED mechanism, it is evaluated by combining it with the existing channel assignment strategies i.e., clique partitioning and random. The simulation results show that the C-ED mechanism with clique partitioning provides improved quality of service than random channel assignment. The C-ED mechanism is compared with Luby Transform (LT) codes which result in reduced transmission delay and improved throughput for a complex network.

Keywords

Group based wireless network Network coding Unicast Multicast Channel assignment and scheduling 

Notes

Acknowledgements

Gunasekaran Raja, Ramkumar Jayaraman gratefully acknowledges support from NGNLabs, Department of Computer Technology, Anna University, Chennai.

References

  1. 1.
    Ergen, M.: Mobile Broadband—Including WiMAX and LTE, 1st edn. Springer, New York (2009)Google Scholar
  2. 2.
  3. 3.
    Benyamina, D., Hafid, A., GenDReau, M.: Wireless mesh networks design: a survey. IEEE Commun. Surv. Tutor. 14(2), 299–310 (2012)CrossRefGoogle Scholar
  4. 4.
    Hossain, E., Rasti, M., Tabassum, H., Abdelnasser, A.: Evolution toward 5G multi-tier cellular wireless networks: an interference management perspective. IEEE Wirel. Commun. 21(3), 118–127 (2014)CrossRefGoogle Scholar
  5. 5.
    Bassoli, R., Marques, H., RoDRiguez, J., Shum, K.W., Tafazolli, R.: Network coding theory: a survey. IEEE Commun. Surv. Tutor. 15(4), 1950–1978 (2013)CrossRefGoogle Scholar
  6. 6.
    Médard, M., Sprintson, A.: Network Coding: Fundamentals and Applications, 1st edn. Elsevier Publications, Amsterdam (2012)Google Scholar
  7. 7.
    Gabale, V., Raman, B., Dutta, P., Kalyanraman, S.: A classification framework for scheduling algorithms in wireless mesh networks. IEEE Commun. Surv. Tutor. 15(1), 199–222 (2013)CrossRefGoogle Scholar
  8. 8.
    Liao, W.H., Kedia, S.P., Dubey, A.K.: Scheduling and channel assignment algorithm for IEEE 802.16 mesh networks using clique partitioning technique. J. Comput. Commun. 35(16), 2025–2034 (2012)CrossRefGoogle Scholar
  9. 9.
    Du, P., Jia, W., Huang, L., Lu, W.: Centralized scheduling and channel assignment in multi-channel single-transceiver WiMax mesh network. In: Proceedings of Wireless Communications and Networking Conference (WCNC), pp. 1736–1741 (2007)Google Scholar
  10. 10.
    Glisic, S.G.: Advanced Wireless Communications & Internet: Future Evolving Technologies, 3rd edn. Wiley, New York (2011)CrossRefGoogle Scholar
  11. 11.
    Sengupta, S., Rayanchu, S., Banerjee, S.: Network coding-aware routing in wireless networks. IEEE/ACM Trans. Netw. 18(4), 1158–1170 (2010)CrossRefGoogle Scholar
  12. 12.
    Chieochan, S., Hossain, E.: Channel assignment for throughput optimization in multichannel multiradio wireless mesh networks using network coding. IEEE Trans. Mobile Comput. 12(1), 118–135 (2014)CrossRefGoogle Scholar
  13. 13.
    Iqbal, F., Javed, M.Y., Naveed, A.: Interference-aware multipath routing in wireless mesh network. EURASIP J. Wirel. Commun. Netw. 2014(1), 1–16 (2014). doi: 10.1186/1687-1499-2014-140 CrossRefGoogle Scholar
  14. 14.
    Zhu, Z., Ping, L., Rodrigues, J.J.P.C., Wen, Y.: Energy-efficient wideband cable access networks in future smart cities. IEEE Commun. Mag. 51(3), 94–100 (2013)CrossRefGoogle Scholar
  15. 15.
    Fragouli, C., Katabi, D., Markopoulou, A., Medard, M., Rahul, H.: Wireless network coding: opportunities & Challenges. In: IEEE Military Communications Conference. MILCOM. doi: 10.1109/MILCOM.2007.4454988 (2007)
  16. 16.
    Stojanovic, I., Zeyu, W., Sharif, M., Starobinski, D.: Data dissemination in wireless broadcast channels: network coding versus cooperation. IEEE Trans. Wirel. Commun. 8(4), 1726–1732 (2009)CrossRefGoogle Scholar
  17. 17.
    Cheng, S.T., Li, J.P., Horng, G.J., Wang, K.C.: The adaptive road routing recommendation for traffic congestion avoidance in smart city. Wirel. Pers. Commun. 77(1), 225–246 (2014)CrossRefGoogle Scholar
  18. 18.
    Ho, T., Lun, D.: Network Coding: An Introduction. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  19. 19.
    Jeon, S.Y., Ahn, J.H., Lee, T.J.: Reliable broadcast using limited LT coding in wireless networks. IEEE Commun. Lett. 20(6), 1187–1190 (2016)CrossRefGoogle Scholar
  20. 20.
    Iqbal, M.A., Dai, B., Huang, B., Hassan, A., Yu, S.: Survey of network coding-aware routing protocols in wireless networks. J. Netw. Comput. Appl. 34(6), 1956–1970 (2011)CrossRefGoogle Scholar
  21. 21.
    Payam, P., Pin-Han, H., James, H.: End-to-end distortion analysis of multicasting over orthogonal receive component decode-forward cooperative broadcast channels. In: IEEE Wireless Communications and Networking Conference (WCNC). doi: 10.1109/WCNC.2016.7564959 (2016)
  22. 22.
    Katti, S., Rahul, H., Hu, W., Katabi, D., Medard, M., Crowcroft, J.: XoRs in the air: practical wireless network coding. IEEE/ACM Trans. Netw. 16(3), 497–510 (2008)CrossRefGoogle Scholar
  23. 23.
    Tarnoi, S., Kumwilaisak, W., Saengudomlert, P., Ji, Y., Kuo, C.C.: QoS-aware routing for heterogeneous layered unicast transmissions in wireless mesh networks with cooperative network coding. EURASIP J. Wirel. Commun. Netw. 81(1), (2014). doi: 10.1186/1687-1499-2014-81
  24. 24.
    Yang, S., Zhou, Q.: Tree analysis of BATS codes. IEEE Commun. Lett. 20(1), 37–40 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Nguyen, D., Tran, T., Nguyen, T., Bose, B.: Wireless broadcast using network coding. IEEE Trans. Veh. Technol. 58(2), 914–925 (2009)CrossRefGoogle Scholar
  26. 26.
    Wang, P., Mao, G., Lin, Z., Ge, X., Anderson, Brian D.O.: Network coding based wireless broadcast with performance guarantee. IEEE Trans. Wirel. Commun. 14(1), 532–544 (2015)CrossRefGoogle Scholar
  27. 27.
    Bhushan, N., Li, J., Malladi, D., Gilmore, R., Brenner, D., Damnjanovic, A., Sukhavasi, R., Patel, C., Geirhofer, S.: Network densification: the dominant theme for wireless evolution into 5G. IEEE Commun. Mag. 52(2), 82–89 (2014)CrossRefGoogle Scholar
  28. 28.
    Hansen, J., Lucani, D.E., Krigslund, J., Medard, M., Fitzek, Frank H.P.: Network coded software defined networking: enabling 5G transmission and storage networks. IEEE Commun. Mag. 53(9), 100–107 (2015)CrossRefGoogle Scholar
  29. 29.
    Changqiao, X., Li, Z., Zhong, L., Zhang, H., Muntean, G.M.: CMT-NC: improving the concurrent multipath transfer performance using network coding in wireless networks. IEEE Trans. Veh. Technol. 65(3), 1735–1751 (2016)CrossRefGoogle Scholar
  30. 30.
    Chen, W., Letaief, K.B., Cao, Z.: Buffer-aware network coding for wireless networks. IEEE/ACM Trans. Netw. 20(5), 1389–1401 (2012)CrossRefGoogle Scholar
  31. 31.
    Chen, X., Engelmann, A., Jukan, A., Medard, M.: Linear network coding reduces buffering in high-speed ethernet parallel transmission systems. IEEE Commun. Lett. 18(4), 636–639 (2014)CrossRefGoogle Scholar
  32. 32.
    Chau, P., Duc Bui, T., Lee, Y. Shin, J.: Efficient data uploading based on network coding in LTE-advanced heterogeneous networks. In: Proc. of 19th International Conference on Advanced Communication Technology (ICACT) . doi: 10.23919/ICACT.2017.7890093 (2017)
  33. 33.
    Guan-Ming, S., Xiao, S., Bai, Y., Wang, M., Vasilakos, A.V., Wang, H.: QoE in video streaming over wireless networks: perspectives and research challenges. Wirel. Netw. 22(2), 1571–1593 (2016)Google Scholar
  34. 34.
    Liang, W., Nguyen, H.V., Ng, S.X., Hanzo, L.: Adaptive-TTCM-aided near-instantaneously adaptive dynamic network coding for cooperative cognitive radio networks. IEEE Trans. Veh. Technol. 65(3), 1314–1325 (2015)CrossRefGoogle Scholar
  35. 35.
    Werner, B.: A random number generator. ACM SIGSIM Simul. Dig. Newslett. 8(1), 35–36 (1976)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Spizzichino, F.: Subjective Probability Models for Lifetimes. Chapman & Hall/CRC, Boca Raton (2001)CrossRefGoogle Scholar
  37. 37.
    Hayajneh, K.F., Yousefi, S., Valipour, M.: Improved finite-length Luby-transform codes in the binary erasure channel. IET Commun. 9(8), 1122–1130 (2015)CrossRefGoogle Scholar
  38. 38.
    Finamore, W.A., Ramos, M.C.: Improving the performance of LT codes. In: Proceedings of \(7^{\text{th}}\) International Symposium on Wireless Communication Systems (ISWCS), pp. 566–570 (2010)Google Scholar
  39. 39.
  40. 40.
  41. 41.

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Computer TechnologyAnna UniversityChennaiIndia

Personalised recommendations