Advertisement

Cluster Computing

, Volume 22, Supplement 3, pp 5165–5173 | Cite as

The computation on compressor model of DC inverter based on the intelligent sensing algorithm of water heater system performance

  • Xuepeng LiuEmail author
  • Xiaohong Hao
  • Dongsheng Zhang
Article

Abstract

The DC inverter is introduced to heat pump water heater system. Exchanger and evaporator mathematical equations are proposed to describe the compressor. The double PI closed-loop strategy is utilized to control inverter heater system. Optimal parameters are verified using experimental methods for measuring heat transfer performance. The refrigerant charge quantity is optimized by the model and experimental data. The optimal value is 3.6 kg. Taking into account the influence of the energy efficiency ratio, output heating and output water on the system performance, the optimal length of capillary tube is 0.65 mm for DC inverter heat pump water heater system.

Keywords

DC inverter Heat pump water heater Refrigerant charge quantity Length of capillary tube 

Notes

Acknowledgements

Supported by NSFC (51075321), (61106107) and Guangdong Science and Technology Project (2016A040403028).

References

  1. 1.
    Medgreen: Quasi-steady state modeling of an air source heat pump water heater. Energy Proc. 6, 325–330 (2011)Google Scholar
  2. 2.
    Zhang, L., Guo, X., Li, W.: Numerical and experimental study on dynamic performance of heat pump water heater with electronic expansion valve. J. Energy Power Eng. 10, 1582–1588 (2012)Google Scholar
  3. 3.
    Chen, Z., Tao, W., Zhu, Y., Hu, P.: Performance analysis of air-water dual source heat pump water heater with heat recovery. Sci. Chin. Technol. 42(8), 937–944 (2012)Google Scholar
  4. 4.
    Huang, J., Li, S.: Application of variable frequency two-stage enthalpy-adding heat pumping technology in air source heat pump water heater. Chin. J. Refrig. Technol. 1 (2014)Google Scholar
  5. 5.
    Sun, F., Ma, Y., Wei, Y., Li, D.: Energy analysis of transcritical carbon dioxide refrigeration cycle with an ejector. In: ICEET, pp. 719–723 (2011)Google Scholar
  6. 6.
    Liu, K., Lv, J., Zhang, S.B., Yang, J.: Study of circuit number on the evaporator in CO\(_2\) heat pump water heater. Appl. Mech. Mater. 71–78, 2266–2270 (2011)CrossRefGoogle Scholar
  7. 7.
    Chen, G., Liang, L., Tang, L., et al.: Experimental investigation of an adjustable ejector for CO\(_2\) heat pump water heaters. J. Zhejiang Univ. 10(11), 1678–1682 (2009)CrossRefGoogle Scholar
  8. 8.
    Yang, Y., Wang, S., Li, J., Li, G.: Current study on gas cooler of CO\(_2\) transcritical refrigeration cycle. Refrig. Air-cond. 14(2), 04–10 (2014)Google Scholar
  9. 9.
    Li, Y., Gong, Y., Peng, J.: Performance analysis of CO2 transcritical refrigeration system units‘ improvement. J. Zhengzhou Univ. Light Ind. (Nat. Sci. Ed.) 29(2), 80–86 (2014)Google Scholar
  10. 10.
    Li, T., Wang, D., Zhong, J., et al.: Experimental study on CO\(_2\) house-hold heat pump water heater. Chem. Eng. 41(2), 9–12 (2013)CrossRefGoogle Scholar
  11. 11.
    Lv, J., Ren, Y., Yang, J., et al.: Experimental study on the influence of the water temperature to the performance of CO\(_2\) heat pump water heater. J. Refrig. 333(6), 73–77 (2012)Google Scholar
  12. 12.
    Chen, Q., Tong, Y., et al.: Experimental study on CO\(_2\) air source heat pump water heater. J. Zhejiang Univ. 46(4), 610–615 (2012)Google Scholar
  13. 13.
    Wang, Z., Gong, Y., Wu, X., et al.: Experimental research of transcritical CO\(_2\) heat pump system with double expansion valve. J. Refrig. 33(6), 57–61 (2012)Google Scholar
  14. 14.
    Bao, T., Lie, Y., Cai, C.: Experimental study on CO\(_2\) heat pump water heater with capillary tube as throttling device. Refrig. Technol. 2, 23–26 (2011)Google Scholar
  15. 15.
    Cai, C., Liu, Y., Su, Q.: Experimental study on heat pump water heater with transcritical CO\(_2\) cycle. Refrig. Air-Cond. 11(1), 66–70 (2011)Google Scholar
  16. 16.
    Gong, Y., Liang, Z., Hou, F., et al.: Experimental research of CO\(_2\) trans-critical cycle water source heat pump system. J. Zhengzhou Univ. Light Ind. (Nat. Sci.) 26(4), 41–44 (2011)Google Scholar
  17. 17.
    Jin, T., Lu, G., Zheng, Z.: Performance comparison of a R410a direct-current frequency heat pump water heater running at variable refrigerant flows. Fluid Mach. 39(5), 70–73 (2011)Google Scholar
  18. 18.
    Gong, Y., Liang, Z.: Experimental research of trans-critical CO\(_2\) heat pump system performance. Fluid Mach. 39(9), 66–69 (2011)Google Scholar
  19. 19.
    Jiang, Y., Ma, Y., Li, M., Fu, L.: An experimental study of trans-critical CO\(_2\) water heat pump using compact tube-in-tube heat exchangers. Energy Convers. Manage. 76, 92–100 (2013)CrossRefGoogle Scholar
  20. 20.
    Yokoyama, R., Wakui, T., Kamakari, J., Takemura, K.: Performance analysis of a CO\(_2\) heat pump water heating system under a daily change in a standardizeddemand. Energy 35, 718–728 (2010)CrossRefGoogle Scholar
  21. 21.
    Fornasieri, E., Girotto, S., Minetto, S.: CO\(_2\) heat pump for domestic hot water. In: 8th IIR Gustav Lorentzen Conference on Natural Working Fluids, Copenhagen, 7–10 September (2008)Google Scholar
  22. 22.
    Minetto, S.: Theoretical and experimental analysis of a CO\(_2\) heat pump for domestic hot water. Int. J. Refrig. 34, 742–751 (2011)CrossRefGoogle Scholar
  23. 23.
    Wang, T., Dharkar, S., Kurtulus, O., Groll, E.A., Yazawa, K.: Experimental study of a CO\(_2\) thermal battery for simultaneous cooling and heating applications. In: Proceedings of 15th International Refrigeration and Air Conditioning Conference at Purdue, West Lafayette, R2701 (2014)Google Scholar
  24. 24.
    Jensen, L.H., Holten, A., Blarke, M.B., Groll, E.A., Shakouri, A., Yazawa, K.: Dynamicanalysis of a dual-mode CO\(_2\) heat pump with both hot and cold thermal storage. In: Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition, San Diego, IMECE2013-62894 (2013)Google Scholar
  25. 25.
    Huang, Z., Chen, W., Tu, J.: Fuzzy temperature control arithmetic for household variable frequency air-conditioner. J. Univ. Shanghai Sci. Technol. 35(2), 169–174 (2013)Google Scholar
  26. 26.
    Liu, X., Hao, X., Zhang, D.: Multi-strategy wide-frequency control technology of DC air conditioner PMSM. J. Sichuan Ordnance 34(6), 97–100 (2013)Google Scholar
  27. 27.
    Guo, Y., Chen, M., Chen, N.: Rotor speed estimate method for sensorless vector control of BLDCM. Control Eng. Chin. 20(2), 348–352 (2013)Google Scholar
  28. 28.
    Wang, W., Li, T., Wu, S.: The design of electrical control system of DC inverter air conditioner. Small Spec. Electr. Mach. 41(11), 7–12 (2013)Google Scholar
  29. 29.
    Zhang, S., Liu, G., Wang, W.: Parameter identification methods for conversion air conditioner compressor motor. J. Power Supply 1, 95–100 (2013)Google Scholar
  30. 30.
    Wang, N., Lu, F., Yang, X., et al.: Application of a three-phase three-level rectifier inverter air conditioner. Electr. Autom. 35(2), 17–20 (2013)Google Scholar
  31. 31.
    Cao, C., Jiang, S., et al.: The design of inverter air-conditioner PWM rectifier. Electr. Appl. 4, 48–52 (2013)Google Scholar
  32. 32.
    Li, X., Ji, J., Ma, S., et al.: Development of sensorless sinusoidal inverter drive controller for central air-conditioning compressor. Compress. Technol. 6, 21–25 (2013)Google Scholar
  33. 33.
    Liu, X., Zhao, D.: Study on PMSM field oriented inventor regulating speed techngoloy. Mach. Tool Hydraul. 38, 106–108 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringZhongshan PolytechnicZhongshanChina
  2. 2.School of Mechanical EngineeringXi’an Jiaotong UniversityXi’anChina
  3. 3.School of Mechatronics EngineeringUniversity of Electronic Science and TechnologyChengduChina

Personalised recommendations