Advertisement

Cluster Computing

, Volume 22, Supplement 3, pp 7229–7239 | Cite as

VerSig: a new approach for online signature verification

  • Mehr Yahya DurraniEmail author
  • Salabat Khan
  • Shehzad Khalid
Article

Abstract

This paper introduces, VerSig, a new proposed scheme for online signature verification. The proposed scheme is based on creation of a signature envelope by employing dynamic time warping method. This envelope provides the basis for decision of forged and authentic signatures. The scheme only uses basic features such as X, Y coordinates of the signature. A well known and standardized Japanese handwritten dataset (provided for ICDAR 2013 signature verification competition) is used to evaluate the performance of proposed method. Proposed method is compared with state of art methods and observed to offer significant improvements in terms of overall accuracy of prediction.

Keywords

Online signature verification Feature selection Template selection Dynamic time warping Signature envelope 

References

  1. 1.
    Iranmanesh, V., et al.: Online handwritten signature verification using neural network classifier based on principal component analysis. Sci. World J. (2014). doi: 10.1155/2014/381469 CrossRefGoogle Scholar
  2. 2.
    Fischer, A., Plamondon, R.: Signature verification based on the kinematic theory of rapid human movements. IEEE Trans. Human Mach. Syst. 47(2), 169–180 (2017)CrossRefGoogle Scholar
  3. 3.
    Plamondon, R., Lorette, G.: Automatic signature verification and writer identification–the state of the art. Pattern Recognit. 22(2), 107–131 (1989)CrossRefGoogle Scholar
  4. 4.
    Feng, H., ChoongWah, C.: Online signature verification using a new extreme points warping technique. Pattern Recognit. Lett. 24(16), 2943–2951 (2003)CrossRefGoogle Scholar
  5. 5.
    Richiardi, J., Ketabdar, H., Drygajlo, A.: Local and global feature selection for on-line signature verification. In: 2005 Proceedings Eighth International Conference on Document Analysis and Recognition. IEEE (2005)Google Scholar
  6. 6.
    Muramatsu, D., Matsumoto, T.: An HMM online signature verifier incorporating signature trajectories. In: 2003 Proceedings Seventh International Conference on Document Analysis and Recognition. IEEE (2003)Google Scholar
  7. 7.
    Diaz, M., et al.: Dynamic signature verification system based on one real signature. In: IEEE Transactions on Cybernetics (2016)Google Scholar
  8. 8.
    Keogh, E.: Exact indexing of dynamic time warping. In: Proceedings of the 28th International Conference on Very Large Data Bases. VLDB Endowment (2002)Google Scholar
  9. 9.
    Mueen, A., Keogh, E.: Extracting optimal performance from dynamic time warping. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM (2016)Google Scholar
  10. 10.
    Leclerc, F., Plamondon, R.: Automatic signature verification: the state of the art—1989–1993. Int. J. Pattern Recognit. Artif. Intell. 8(03), 643–660 (1994)CrossRefGoogle Scholar
  11. 11.
    Impedovo, D., Pirlo, G.: Automatic signature verification: the state of the art. IEEE Trans. Syst. Man Cybern. Part C 28(5), 609–635 (2008)CrossRefGoogle Scholar
  12. 12.
    Mohammed, R.A., et al.: State-of-the-art in handwritten signature verification system. In: 2015 International Conference on Computational Science and Computational Intelligence (CSCI). IEEE (2015)Google Scholar
  13. 13.
    Plamondon, R., Srihari, S.N.: Online and off-line handwriting recognition: a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 63–84 (2000)CrossRefGoogle Scholar
  14. 14.
    Bashir, M., Kempf, J.: Area bound dynamic time warping based fast and accurate person authentication using a biometric pen. Digit. Signal Process. 23(1), 259–267 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kholmatov, A., Yanikoglu, B.: Identity authentication using improved online signature verification method. Pattern Recognit. Lett. 26(15), 2400–2408 (2005)CrossRefGoogle Scholar
  16. 16.
    Guru, D.S., Prakash, H.N.: Online signature verification and recognition: an approach based on symbolic representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 1059–1073 (2009)CrossRefGoogle Scholar
  17. 17.
    Qiao, Y., Wang, X., Xu, C.: Learning Mahalanobis distance for DTW based online signature verification. In: 2011 IEEE International Conference on Information and Automation (ICIA). IEEE (2011)Google Scholar
  18. 18.
    Gruber, C., et al.: Online signature verification with support vector machines based on LCSS kernel functions. IEEE Trans. Syst. Man Cybern. Part B 40(4), 1088–1100 (2010)CrossRefGoogle Scholar
  19. 19.
    Fierrez, J., et al.: HMM-based on-line signature verification: feature extraction and signature modeling. Pattern Recognit. Lett. 28(16), 2325–2334 (2007)CrossRefGoogle Scholar
  20. 20.
    Richiardi, J., Drygajlo, A.: Gaussian mixture models for on-line signature verification. In: Proceedings of the 2003 ACM SIGMM Workshop on Biometrics Methods and Applications. ACM (2003)Google Scholar
  21. 21.
    Sharma, A., Sundaram, S.: A novel online signature verification system based on GMM features in a DTW framework. IEEE Trans. Inf. Forensics Secur. 12(3), 705–718 (2017)CrossRefGoogle Scholar
  22. 22.
    Fauziyah, S., et al.: Signature verification system using support vector machine. In: 2009 ISMA’09 6th International Symposium on Mechatronics and its Applications. IEEE (2009)Google Scholar
  23. 23.
    Nanni, L., Lumini, A.: A novel local on-line signature verification system. Pattern Recognit. Lett. 29(5), 559–568 (2008)CrossRefGoogle Scholar
  24. 24.
    Yanikoglu, B., Kholmatov, A.: Online signature verification using Fourier descriptors. EURASIP J. Adv. Signal Process. 2009, 12–24 (2009)CrossRefGoogle Scholar
  25. 25.
    Rashidi, S., Fallah, A., Towhidkhah, F.: Feature extraction based DCT on dynamic signature verification. Sci. Iran. 19(6), 1810–1819 (2012)CrossRefGoogle Scholar
  26. 26.
    Arora, M., Singh, K., Mander, G.: Discrete fractional cosine transform based online handwritten signature verification. In: 2014 Recent Advances in Engineering and Computational Sciences (RAECS). IEEE (2014)Google Scholar
  27. 27.
    Manjunatha, K.S., et al.: Online signature verification based on writer dependent features and classifiers. Pattern Recognit. Lett. 80, 129–136 (2016)CrossRefGoogle Scholar
  28. 28.
    Mlaba, A.S.P., Gwetu, M.V., Viriri, S.: A distance-based approach to modelling reference signature for verification. In: Conference on Information Communication Technology and Society (ICTAS). IEEE (2017)Google Scholar
  29. 29.
    Rashidi, S., Fallah, A., Towhidkhah, F.: Similarity evaluation of online signatures based on modified dynamic time warping. Appl. Artif. Intell. 27(7), 599–617 (2013)CrossRefGoogle Scholar
  30. 30.
    Ding, L., et al.: Based on EADTW on-line handwriting signature handwriting signature verification system design and implementation. In: Applied Mechanics and Materials. Vol. 556. Trans Tech Publications, Zurich (2014)Google Scholar
  31. 31.
    Giuseppe, P., et al.: Multidomain verification of dynamic signatures using local stability analysis. IEEE Trans. Human Mach. Syst. 45(6), 805–810 (2015)CrossRefGoogle Scholar
  32. 32.
    Fischer, A., et al.: Robust score normalization for dtw-based on-line signature verification. In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR). IEEE (2015)Google Scholar
  33. 33.
    Tahir, M., Akram, M.U., Idris, M.A.: Online signature verification using segmented local features. In: 2016 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube). IEEE (2016)Google Scholar
  34. 34.
    Sharma, A., Sundaram, S.: An enhanced contextual DTW based system for online signature verification using vector quantization. Pattern Recognit. Lett. 84, 22–28 (2016)CrossRefGoogle Scholar
  35. 35.
    Fang, Y., et al.: A novel video-based system for in-air signature verification. Comput. Electr. Eng. 57, 1–14 (2017)CrossRefGoogle Scholar
  36. 36.
    Muramatsu, D., Matsumoto, T.: Effectiveness of pen pressure, azimuth, and altitude features for online signature verification. Adv. Biom. 503–512 (2007)Google Scholar
  37. 37.
    Malik, M.I., et al.: ICDAR 2013 competitions on signature verification and writer identification for on-and offline skilled forgeries (SigWiComp 2013). In: 2013 12th International Conference on Document Analysis and Recognition (ICDAR). IEEE (2013)Google Scholar
  38. 38.
    Tahir, M., Akram, M.U.: Online signature verification using hybrid features. In: 2015 Second International Conference on Information Security and Cyber Forensics (InfoSec). IEEE 2015Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Mehr Yahya Durrani
    • 1
    • 2
    Email author
  • Salabat Khan
    • 1
  • Shehzad Khalid
    • 3
  1. 1.Department of Computer ScienceCOMSATS Institute of Information TechnologyAttockPakistan
  2. 2.Department of Computer ScienceIqra National UniversityPeshawarPakistan
  3. 3.Department of Computer EngineeringBahria UniversityIslamabadPakistan

Personalised recommendations