The contribution of platelets to intravascular arrest, extravasation, and outgrowth of disseminated tumor cells

  • Amelia Foss
  • Leonel Muñoz-Sagredo
  • Jonathan Sleeman
  • Wilko ThieleEmail author
Rising Star Review


Platelets are primarily known for their contribution to hemostasis and subsequent wound healing. In addition to these functions, platelets play a role in the process of metastasis. Since the first study that suggested a metastasis-promoting function for platelets was published in 1968, various mechanisms have been proposed to explain how platelets contribute to the metastatic process. These include roles in the intravascular arrest of tumor cells, in tumor cell transendothelial migration, in the degradation of basement membrane barriers, in migration and invasion at the metastatic site, and in the proliferation of disseminated tumor cells. Nevertheless, conflicting observations about the role of platelets in these processes have also been reported. Here, we review the in vivo evidence that supports a role for platelets in metastasis formation, propose several scenarios for the contribution of platelets to tumor cell arrest and transendothelial migration, and discuss the evidence that platelets contribute to metastatic invasion and outgrowth.


Platelets Metastasis Tumor cell arrest Extravasation Intravascular outgrowth 



  1. 1.
    Gil-Bernabé AM, Lucotti S, Muschel RJ (2013) Coagulation and metastasis: what does the experimental literature tell us? Br J Haematol 162:433–441PubMedCrossRefGoogle Scholar
  2. 2.
    Wood S Jr (1958) Pathogenesis of metastasis formation observed in vivo in the rabbit ear chamber. AMA Arch Pathol 66:550–568PubMedGoogle Scholar
  3. 3.
    Zeidman I (1961) The fate of circulating tumors cells. I. Passage of cells through capillaries. Cancer Res 21:38–39PubMedGoogle Scholar
  4. 4.
    Gasic G, Gasic T (1962) Removal of sialic acid from the cell coat in tumor cells and vascular endothelium, and its effects on metastasis. Proc Natl Acad Sci USA 48:1172–1177PubMedCrossRefGoogle Scholar
  5. 5.
    Agostino D, Cliffton EE, Girolami A (1966) Effect of prolonged coumadin treatment on the production of pulmonary metastases in the rat. Cancer 19:284–288PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Gasic GJ, Gasic TB, Stewart CC (1968) Antimetastatic effects associated with platelet reduction. Proc Natl Acad Sci USA 61:46–52PubMedCrossRefGoogle Scholar
  7. 7.
    Pearlstein E, Ambrogio C, Karpatkin S (1984) Effect of anti-platelet antibody on the development of pulmonary metastases following injection of CT26 colon adenocarcinoma, Lewis lung carcinoma, and B16 amelanotic melanoma tumor cells into mice. Cancer Res 44:3884–3887PubMedPubMedCentralGoogle Scholar
  8. 8.
    Mahalingam M, Ugen KE, Kao KJ, Klein PA (1988) Functional role of platelets in experimental metastasis studied with cloned murine fibrosarcomacell variants. Cancer Res 48:1460–1464PubMedPubMedCentralGoogle Scholar
  9. 9.
    Karpatkin S, Pearlstein E, Ambrogio C, Coller BS (1988) Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Invest 81:1012–1019PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Nieswandt B, Hafner M, Echtenacher B, Männel DN (1999) Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res 59:1295–1300PubMedPubMedCentralGoogle Scholar
  11. 11.
    Camerer E, Qazi AA, Duong DN, Cornelissen I, Advincula R, Coughlin SR (2004) Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood 104:397–401PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Boucharaba A, Serre CM, Grès S, Saulnier-Blache JS, Bordet JC, Guglielmi J, Clézardin P, Peyruchaud O (2004) Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastasesin breast cancer. J Clin Invest 114:1714–1725PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Morimoto K, Satoh-Yamaguchi K, Hamaguchi A, Inoue Y, Takeuchi M, Okada M, Ikeda W, Takai Y, Imai T (2008) Interaction of cancer cells with platelets mediated by Necl-5/poliovirus receptor enhances cancercell metastasis to the lungs. Oncogene 27:264–273PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Coupland LA, Chong BH, Parish CR (2012) Platelets and P-selectin control tumor cell metastasis in an organ-specific manner and independently of NK cells. Cancer Res 72:4662–4671PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Weber MR, Zuka M, Lorger M, Tschan M, Torbett BE, Zijlstra A, Quigley JP, Staflin K, Eliceiri BP, Krueger JS, Marchese P, Ruggeri ZM, Felding BH (2016) Activated tumor cell integrin αvβ3 cooperates with platelets to promote extravasation and metastasis from the blood stream. Thromb Res 140(Suppl 1):S27–S36PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Smeda M, Kieronska A, Proniewski B, Jasztal A, Selmi A, Wandzel K, Zakrzewska A, Wojcik T, Przyborowski K, Derszniak K, Stojak M, Kaczor D, Buczek E, Watala C, Wietrzyk J, Chlopicki S (2018) Dual antiplatelet therapy with clopidogrel and aspirin increases mortality in 4T1 metastatic breast cancer-bearing mice by inducing vascular mimicry in primary tumour. Oncotarget 9:17810–17824PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Thiele W, Rothley M, Dimmler A, Bugert P, Salomó Coll C, Sleeman JP (2018) Platelet deficiency in Tpo–/– mice can both promote and suppress the metastasis of experimental breast tumors in an organ-specific manner. Clin Exp Metastasis 35:679–689PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Li R, Ren M, Chen N,Luo M, Deng X, Xia J, Yu G, Liu J, He B, Zhang X, Zhang Z, Zhang X, Ran B, Wu J (2014) Presence of intratumoral platelets is associated with tumor vessel structure and metastasis. BMC Cancer 14:167PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Jackson W 3rd, Sosnoski DM, Ohanessian SE, Chandler P, Mobley A, Meisel KD, Mastro AM (2017) Role of megakaryocytes in breast cancer metastasis to bone. Cancer Res 77:1942–1954PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Sleeman JP, Nazarenko I, Thiele W (2011) Do all roads lead to Rome? Routes to metastasis development. Int J Cancer 128:2511–2526PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Baserga R, Saffi-Otti U (1955) Experimental studies on histogenesis of blood-borne metastases. AMA Arch Pathol 59:26–34PubMedPubMedCentralGoogle Scholar
  22. 22.
    Wood S Jr (1964) Experimental studies of the intravascular dissemination of ascitic v2 carcinoma cells in the rabbit, with special reference to fibrinogen and fibrinolytic agents. Bull Schweiz Akad Med Wiss 20:92–121Google Scholar
  23. 23.
    Jones DS, Wallace AC, Fraser EE (1971) Sequence of events in experimental metastases of Walker 256 tumor: light, immunofluorescent, and electron microscopic observations. J Natl Cancer Inst 46:493–504PubMedPubMedCentralGoogle Scholar
  24. 24.
    Chew EC, Josephson RL, Wallace AC (1976) Chap. 6: Morphologic aspects of the arrest of circulating cells. In: Weiss L (ed) Fundamental aspects of metastasis. North-Holland Publishing Company, Amsterdam, pp 121–150Google Scholar
  25. 25.
    Chew EC, Wallace AC (1976) Demonstration of fibrin in early stages of experimental metastases. Cancer Res 36:1904–1909PubMedGoogle Scholar
  26. 26.
    Menter DG, Hatfield JS, Harkins C, Sloane BF, Taylor JD, Crissman JD, Honn KV (1987) Tumor cell-platelet interactions in vitro and their relationship to in vivo arrest of hematogenouslycirculating tumor cells. Clin Exp Metastasis 5:65–78PubMedCrossRefGoogle Scholar
  27. 27.
    Al-Mehdi AB, Tozawa K, Fisher AB, Shientag L, Lee A, Muschel RJ (2000) Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat Med 6:100–102PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Gassmann P, Kang ML, Mees ST, Haier J (2010) In vivo tumor cell adhesion in the pulmonary microvasculature is exclusively mediated by tumor cell-endothelial cell interaction. BMC Cancer 10:177PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Echtler K, Konrad I, Lorenz M, Schneider S, Hofmaier S, Plenagl F, Stark K, Czermak T, Tirniceriu A, Eichhorn M, Walch A, Enders G, Massberg S, Schulz C (2017) Platelet GPIIb supports initial pulmonary retention but inhibits subsequent proliferation of melanoma cells during hematogenic metastasis. PLoS ONE 12:e0172788PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Morris VL, MacDonald IC, Koop S, Schmidt EE, Chambers AF, Groom AC (1993) Early interactions of cancer cells with the microvasculature in mouse liver and muscle during hematogenous metastasis: videomicroscopic analysis. Clin Exp Metastasis 11:377–390PubMedCrossRefGoogle Scholar
  31. 31.
    Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R, Herms J, Winkler F (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16:116–122PubMedCrossRefGoogle Scholar
  32. 32.
    Zhang Q, Yang M, Shen J, Gerhold LM, Hoffman RM, Xing HR (2010) The role of the intravascular microenvironment in spontaneous metastasis development. Int J Cancer 126:2534–2541PubMedCrossRefGoogle Scholar
  33. 33.
    Au SH, Storey BD, Moore JC, Tang Q, Chen YL, Javaid S, Sarioglu AF, Sullivan R, Madden MW, O'Keefe R, Haber DA, Maheswaran S, Langenau DM, Stott SL, Toner M (2016) Clusters of circulating tumor cells traverse capillary-sized vessels. Proc Natl Acad Sci USA 113:4947–4952PubMedCrossRefGoogle Scholar
  34. 34.
    Crissman JD, Hatfield J, Schaldenbrand M, Sloane BF, Honn KV (1985) Arrest and extravasation of B16 amelanotic melanoma in murine lungs. A light and electron microscopic study. Lab Invest 53:470–478PubMedGoogle Scholar
  35. 35.
    Chambers A, Schmidt EE, MacDonald IC, Morris VL, Groom AC (1992) Early steps in hematogenous metastasis of B16F1 melanoma cells in chick embryos studied by high-resolution intravital videomicroscopy. J Natl Cancer Inst 84:797–803PubMedCrossRefGoogle Scholar
  36. 36.
    Chambers AF, MacDonald IC, Schmidt EE, Koop S, Morris VL, Khokha R, Groom AC (1995) Steps in tumor metastasis: new concepts from intravital videomicroscopy. Cancer Metastasis Rev 14:279–301PubMedCrossRefGoogle Scholar
  37. 37.
    Dingemans KP (1974) Invasion of liver tissue by blood-borne mammary carcinoma cells. J Natl Cancer Inst 53:1813–1824PubMedCrossRefGoogle Scholar
  38. 38.
    Sindelar WF, Tralka TS, Ketcham AS (1975) Electron microscopic observations on formation of pulmonary metastases. J Surg Res 18:137–161PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Crissman JD, Hatfield JS, Menter DG, Sloane B, Honn KV (1988) Morphological study of the interaction of intravascular tumor cells with endothelial cells and subendothelial matrix. Cancer Res 48:4065–4072PubMedPubMedCentralGoogle Scholar
  40. 40.
    Im JH, Fu W, Wang H, Bhatia SK, Hammer DA, Kowalska MA, Muschel RJ (2004) Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early metastatic colony formation. Cancer Res 64:8613–8619PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Nylander S, Mattsson C (2003) Thrombin-induced platelet activation and its inhibition by anticoagulants with different modes of action. Blood Coagul Fibrinolysis 14:159–167PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Labelle M, Begum S, Hynes RO (2014) Platelets guide he formation of early metastatic niches. Proc Natl Acad Sci USA 11:E3053–E3061CrossRefGoogle Scholar
  43. 43.
    Aird WC (2007) Phenotypic Heterogeneity of the Endothelium II. Representative Vascular Beds. Circ Res 100:174–190PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Wang H, Fu W, Im JH, Zhou Z, Santoro SA, Iyer V, DiPersio CM, Yu QC, Quaranta V, Al-Mehdi A, Muschel RJ (2004) Tumor cell alpha3beta1 integrin and vascular laminin-5 mediate pulmonary arrest and metastasis. J Cell Biol 164:935–941PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Enns A, Gassmann P, Schluter K, Korb T, Spiegel HU, Senninger N, Haier J (2004) Integrins can directly mediate metastatic tumor cell adhesion within the liver sinusoids. J Gastrointest Surg 8:1049–1059PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Enns A, Korb T, Schluter K, Gassmann P, Spiegel HU, Senninger N, Mitjans F, Haier J (2005) Alphavbeta5-integrins mediate early steps of metastasis formation. Eur J Cancer 41:1065–1072PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Félétou M (2001) The endothelium: Part 1: multiple functions of the endothelial cells—focus on endothelium-derived vasoactive mediators. Morgan & Claypool Life Sciences, San RafaelGoogle Scholar
  48. 48.
    Warren BA, Vales O (1972) The adhesion of thromboplastic tumour emboli to vessel walls in vivo. Br J Exp Pathol 53:301–313PubMedPubMedCentralGoogle Scholar
  49. 49.
    Lonsdorf AS, Krämer BF, Fahrleitner M, Schönberger T, Gnerlich S, Ring S, Gehring S, Schneider SW, Kruhlak MJ, Meuth SG, Nieswandt B, Gawaz M, Enk AH, Langer HF (2012) Engagement of αIIbβ3 (GPIIb/IIIa) with ανβ3 integrin mediates interaction of melanoma cells with platelets: a connection to hematogenous metastasis. J Biol Chem 287:2168–2178PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Kim YJ, Borsig L, Varki NM, Varki A (1998) P-selectin deficiency attenuates tumor growth and metastasis. Proc Natl Acad Sci USA 95:9325–9330PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Stegner D, Dütting S, Nieswandt B (2014) Mechanistic explanation for platelet contribution to cancer metastasis. Thromb Res 133:S149–S157PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Ludatscher RM, Luse SA, Suntzeff V (1967) An electron microscopic study of pulmonary tumor emboli from transplantable Morris hepatoma 5123. Cancer Res 27:1939–1952PubMedPubMedCentralGoogle Scholar
  53. 53.
    Zhao L, Thorsheim CL, Suzuki A, Stalker TJ, Min SH, Lian L, Fairn GD, Cockcroft S, Durham A, Krishnaswamy S, Abrams CS (2017) Phosphatidylinositol transfer protein-α in platelets is inconsequential for thrombosis yet is utilizedfor tumor metastasis. Nat Commun 8:1216PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Kinjo M (1978) Lodgement and extravasation of tumour cells in blood-borne metastasis: an electron microscope study. Br J Cancer 38:293–301PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Sugino T, Kusakabe T, Hoshi N, Yamaguchi T, Kawaguchi T, Goodison S, Sekimata M, Homma Y, Suzuki T (2002) An invasion-independent pathway of blood-borne metastasis: a new murine mammary tumor model. Am J Pathol 160:1973–1980PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Kats-Ugurlu G, Roodink I, de Weijert M, Tiemessen D, Maass C, Verrijp K, van der Laak J, de Waal R, Mulders P, Oosterwijk E, Leenders W (2009) Circulating tumour tissue fragments in patients with pulmonary metastasis of clear cell renal cell carcinoma. J Pathol 219:287–293PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    García-Román J, Zentella-Dehesa A (2013) Vascular permeability changes involved in tumor metastasis. Cancer Lett 335:259–269PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Cloutier N, Paré A, Farndale RW, Schumacher HR, Nigrovic PA, Lacroix S, Boilard E (2012) Platelets can enhance vascular permeability. Blood 120:1334–1343PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Imura Y, Terashita Z, Nishikawa K (1986) Possible role of platelet activating factor (PAF) in disseminated intravascular coagulation (DIC), evidenced by use of a PAF antagonist, CV-3988. Life Sci 39:111–117PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Maloney JP, Silliman CC, Ambruso DR, Wang J, Tuder RM, Voelkel NF (1998) In vitro release of vascular endothelial growth factor during platelet aggregation. Am J Physiol 275(3):H1054-61PubMedPubMedCentralGoogle Scholar
  61. 61.
    Chignard M, Le Couedic JP, Tence M, Vargaftig BB, Benveniste J (1977) The role of platelet-activating factor in platelet aggregation. Nature 279:799–800CrossRefGoogle Scholar
  62. 62.
    Knezevic II, Predescu SA, Neamu RF, Gorovoy MS, Knezevic NM, Easington C, Malik AB, Predescu DN (2009) Tiam1 and Rac1 are required for platelet-activating factor-induced endothelial junctional disassembly and increase in vascular permeability. J Biol Chem 284:5381–5394PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Gros A, Ollivier V, Ho-Tin-Noé B (2015) Platelets in inflammation: regulation of leukocyte activities and vascular repair. Front Immunol 5:678PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Garcia JG, Verin AD, Schaphorst KL (1996) Regulation of thrombin-mediated endothelial cell contraction and permeability. Semin Thromb Hemost 22:309–315PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Nakamura T, Teramoto H, Ichihara A (1986) Purification and characterization of a growth factor from rat platelets for mature parenchymal hepatocytes in primary cultures. Proc Natl Acad Sci U S A 83:6489–6493PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Martin TA, Mansel RE, Jiang WG (2002) Antagonistic effect of NK4 on HGF/SF induced changes in the transendothelial resistance (TER) and paracellular permeability of human vascular endothelial cells. J Cell Physiol 192:268–275PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Yamada N, Nakagawa S, Horai S, Tanaka K, Deli MA, Yatsuhashi H, Niwa M (2014) Hepatocyte growth factor enhances the barrier function in primary cultures of rat brainmicrovascular endothelial cells. Microvasc Res 92:41–49PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Stenberg PE, Shuman MA, Levine SP, Bainton DF (1984) Redistribution of alpha-granules and their contents in thrombin-stimulated platelets. J Cell Biol 98:748–760PubMedCrossRefGoogle Scholar
  69. 69.
    Sahni A, Arévalo MT, Sahni SK, Simpson-Haidaris PJ (2009) The VE-cadherin binding domain of fibrinogen induces endothelial barrier permeability and enhances transendothelial migration of malignant breast epithelial cells. Int J Cancer 125:577–584PubMedCrossRefGoogle Scholar
  70. 70.
    Hamberg M, Samuelsson B (1974) Prostaglandin endoperoxides. Novel transformations of arachidonic acid in human platelets. Proc Natl Acad Sci USA 71:3400–3404PubMedCrossRefGoogle Scholar
  71. 71.
    Honn KV, Grossi IM, Diglio CA, Wojtukiewicz M, Taylor JD (1989) Enhanced tumor cell adhesion to the subendothelial matrix resulting from 12(S)-HETE-inducedendothelial cell retraction. FASEB J 3:2285–2293PubMedCrossRefGoogle Scholar
  72. 72.
    Kramer RH, Nicolson GL (1979) Interactions of tumor cells with vascular endothelial cell monolayers: a model for metastatic invasion. Proc Natl Acad Sci USA 76:5704–5708PubMedCrossRefGoogle Scholar
  73. 73.
    Boxberger HJ, Paweletz N, Spiess E, Kriehuber R (1989) An in vitro model study of BSp73 rat tumour cell invasion into endothelial monolayer. Anticancer Res 9:1777–1786PubMedGoogle Scholar
  74. 74.
    Honn KV, Tang DG, Grossi IM, Renaud C, Duniec ZM, Johnson CR, Diglio CA (1994) Enhanced endothelial cell retraction mediated by 12(S)-HETE: a proposed mechanism for the role of platelets in tumor cell metastasis. Exp Cell Res 210:1–9PubMedCrossRefGoogle Scholar
  75. 75.
    Lewalle JM, Bajou K, Desreux J, Mareel M, Dejana E, Noël A, Foidart JM (1997) Alteration of interendothelial adherens junctions following tumor cell-endothelial cell interaction in vitro. Exp Cell Res 237:347–356PubMedCrossRefGoogle Scholar
  76. 76.
    Tremblay PL, Huot J, Auger FA (2008) Mechanisms by which E-selectin regulates diapedesis of colon cancer cells under flow conditions. Cancer Res 68:5167–5176PubMedCrossRefGoogle Scholar
  77. 77.
    Schumacher D, Strilic B, Sivaraj KK, Wettschureck N, Offermanns S (2013) Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis viaP2Y2 receptor. Cancer Cell 24:130–137PubMedCrossRefGoogle Scholar
  78. 78.
    Leong HS, Robertson AE, Stoletov K, Leith SJ, Chin CA, Chien AE, Hague MN, Ablack A, Carmine-Simmen K, McPherson VA, Postenka CO, Turley EA, Courtneidge SA, Chambers AF, Lewis JD (2014) Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis. Cell Rep 8:1558–1570PubMedCrossRefGoogle Scholar
  79. 79.
    Häuselmann I, Roblek M, Protsyuk D, Huck V, Knopfova L, Grässle S, Bauer AT, Schneider SW, Borsig L (2016) Monocyte induction of E-selectin-mediated endothelial activation releases VE-cadherin junctions to promote tumor cell extravasation in the metastasis cascade. Cancer Res 76:5302–5312PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Ward Y, Lake R, Faraji F, Sperger J, Martin P, Gilliard C, Ku KP, Rodems T, Niles D, Tillman H, Yin J, Hunter K, Sowalsky AG, Lang J, Kelly K (2018) Platelets promote metastasis via binding tumor CD97 leading to bidirectional signaling that coordinates transendothelial migration. Cell Rep 23:808–822PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Schleicher RI, Reichenbach F, Kraft P, Kumar A, Lescan M, Todt F, Göbel K, Hilgendorf I, Geisler T, Bauer A, Olbrich M, Schaller M, Wesselborg S, O'Reilly L, Meuth SG, Schulze-Osthoff K, Gawaz M, Li X, Kleinschnitz C, Edlich F, Langer HF (2015) Platelets induce apoptosis via membrane-bound FasL. Blood 126:1483–1493PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Kuckleburg CJ, Tiwari R, Czuprynski CJ (2008) Endothelial cell apoptosis induced by bacteria-activated platelets requires caspase-8 and – 9 and generation of reactive oxygen species. Thromb Haemost 99:363–372PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Shaughnessy SG, Lafrenie RM, Buchanan MR, Podor TJ, Orr FW (1991) Endothelial cell damage by Walker carcinosarcoma cells is dependent on vitronectin receptor-mediated tumor cell adhesion. Am J Pathol 138:1535–1543PubMedPubMedCentralGoogle Scholar
  84. 84.
    Kebers F, Lewalle JM, Desreux J, Munaut C, Devy L, Foidart JM, Noël A (1998) nduction of endothelial cell apoptosis by solid tumor cells. Exp Cell Res 240:197–205PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Vekemans K, Timmers M, Vermijlen D, Zanger RD, Wisse E, Braet F (2004) Cytotoxic reactions f CC531s towards liver sinusoidal endothelial cells: a microscopical study. Comp Hepato 3(Suppl 1):S49CrossRefGoogle Scholar
  86. 86.
    Strilic B, Yang L, Albarrán-Juárez J, Wachsmuth L, Han K, Müller UC, Pasparakis M, Offermanns S (2016) Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. Nature 536:215–218PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Seizer P, May AE (2013) Platelets and matrix metalloproteinases. Thromb Haemost 110:903–909PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Albeiroti S, Ayasoufi K, Hill DR, Shen B, de la Motte CA (2015) Platelet hyaluronidase-2: an enzyme that translocates to the surface upon activation to function in extracellular matrix degradation. Blood 125:1460–1469PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Cui H, Tan YX, Österholm C, Zhang X, Hedin U, Vlodavsky I, Li JP (2016) Heparanase expression upregulates platelet adhesion activity and thrombogenicity. Oncotarget 7:39486–39496PubMedPubMedCentralGoogle Scholar
  90. 90.
    Gresele P, Falcinelli E, Sebastiano M, Momi S (2017) Matrix Metalloproteinases and Platelet Function. Prog Mol Biol Transl Sci 147:133–165PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Pang JH, Coupland LA, Freeman C, Chong BH, Parish C (2015) Activation of tumour cell ECM degradation by thrombin-activated platelet membranes: potentially a P-selectin and GPIIb/IIIa-dependent process. Clin Exp Metastasis 32:495–505PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Malezewski JJ, Lai CK, Veinot JP (2016) Anatomic considerations and examination of cardiovascular specimens (excluding devices). In: Buja LM, Butany J (eds) Cardiovascular pathology, 4th ed. Academic Press, Cambridge, pp 1–56Google Scholar
  93. 93.
    Nieto MA, Cano A (2012) The epithelial-mesenchymal transition under control: global programs to regulate epithelial plasticity. Semin Cancer Bio 22:361–368CrossRefGoogle Scholar
  94. 94.
    Labelle M, Begum S, Hynes RO (2011) Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20:576–590PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Ho-Tin-Noé B, Goerge T, Cifuni SM, Duerschmied D, Wagner DD (2008) Platelet granule secretion continuously prevents intratumor hemorrhage. Cancer Res 68:6851–6858PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Cho MS, Bottsford-Miller J, Vasquez HG, Stone R, Zand B, Kroll MH, Sood AK, Afshar-Kharghan V (2012) Platelets increase the proliferation of ovarian cancer cells. Blood 120:4869–4872PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Yuan L, Liu X (2015) Platelets are associated with xenograft tumor growth and the clinical malignancy of ovariancancer through an angiogenesis-dependent mechanism. Mol Med Rep 1:2449–2458CrossRefGoogle Scholar
  98. 98.
    Haemmerle M, Taylor ML, Gutschner T, Pradeep S, Cho MS, Sheng J, Lyons YM, Nagaraja AS, Dood RL, Wen Y, Mangala LS, Hansen JM, Rupaimoole R, Gharpure KM, Rodriguez-Aguayo C, Yim SY, Lee JS, Ivan C, Hu W, Lopez-Berestein G, Wong ST, Karlan BY, Levine DA, Liu J, Afshar-Kharghan V, Sood AK (2017) Platelets reduce anoikis and promote metastasis by activating YAP1 signaling. Nat Commun 8:310PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Palumbo JS, Talmage KE, Massari JV, La Jeunesse CM, Flick MJ, Kombrinck KW, Jirousková M, Degen JL (2005) Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 105:178–185PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Medizinische Fakultät MannheimUniversität Heidelberg, ECASMannheimGermany
  2. 2.KIT Campus NordInstitut für Toxikologie und GenetikKarlsruheGermany
  3. 3.Faculty of MedicineUniversity of ValparaisoValparaisoChile

Personalised recommendations