Circulating microRNAs in head and neck cancer: a scoping review of methods

  • Nuwan DharmawardanaEmail author
  • Eng Hooi Ooi
  • Charmaine Woods
  • Damian Hussey
Technical Note


Circulating microRNAs have been described as head and neck cancer biomarkers in multiple anatomical subsites including the oral cavity, nasopharynx, larynx, salivary glands and the skin. While there is an expanding volume of published literature showing the significance of individual or panels of microRNAs, the clinical validation of candidate biomarkers is lacking. The various methods used to collect, store, process and interpret these microRNAs are likely introducing bias and contributing to the inconsistent results. A systematic scoping review was conducted using PRISMA standards to identify published English literature between 2007 and 2018. Pubmed and EMBASE databases were searched using specific keyword combinations related to head and neck cancer, circulating samples (whole blood, plasma or serum) and microRNA. Following the title and abstract review, two primary authors appraised the articles for their suitability to include in the review based on the detail of methodological descriptions. Thirty suitable articles were identified relating to nasopharyngeal carcinoma, oral cavity, oropharyngeal and laryngeal squamous cell carcinoma as well as primary salivary gland malignancies. Comprehensive methodological analysis identified poor reporting of detailed methodology, variations in collection, storage, pre-processing, RNA isolation and relative quantification including normalisation method. We recommend standardising the pre-processing, RNA isolation, normalisation and relative quantitation steps at biomarker discovery phase. Such standardisation would allow for bias minimisation and effective progression into clinical validation phases.


MicroRNA Cancer Circulating Biomarkers Otolaryngology 



Garnett Passé Rodney William Memorial Foundation (GPRWMF). Australia and New Zealand Head and Neck Cancer Society (ANZHNCS).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Pulte D, Brenner H (2010) Changes in survival in head and neck cancers in the late 20th and early 21st century: a period analysis. Oncologist 15(9):994–1001CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Polanska H et al (2014) Clinical significance of head and neck squamous cell cancer biomarkers. Oral oncology 50(3):168–177CrossRefPubMedGoogle Scholar
  3. 3.
    Nygard M et al (2012) Population-base evidence of increased survival in human papillomavirus-related head and neck cancer. Eur J Cancer 48(9):1341–1346CrossRefPubMedGoogle Scholar
  4. 4.
    Tiberio P et al (2015) Challenges in using circulating miRNAs as cancer biomarkers. BioMed Res Int 2015:731479CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854CrossRefPubMedGoogle Scholar
  6. 6.
    Reinhart BJ et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906CrossRefPubMedGoogle Scholar
  7. 7.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297CrossRefPubMedGoogle Scholar
  8. 8.
    Trang P, Weidhaas JB, Slack FJ (2009) MicroRNAs as potential cancer therapeutics. Oncogene 27:S52CrossRefGoogle Scholar
  9. 9.
    Mitchell PS et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105(30):10513–10518CrossRefPubMedGoogle Scholar
  10. 10.
    Poel D et al (2018) Evaluation of several methodological challenges in circulating miRNA qPCR studies in patients with head and neck cancer. Exp Mol Med 50(3):e454CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Munn Z et al (2018) Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med Res Methodol 18(1):143CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cinpolat O et al (2017) Comparison of microRNA profiles between benign and malignant salivary gland tumors in tissue, blood and saliva samples: a prospective, case-control study. Braz J Otorhinolaryngol 83(3):276–284CrossRefPubMedGoogle Scholar
  13. 13.
    Ricieri Brito JA et al (2010) Reduced expression of mir15a in the blood of patients with oral squamous cell carcinoma is associated with tumor staging. Exp Ther Med 1(1):217–221CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Xu Y et al (2016) Expression of serum microRNA-378 and its clinical significance in laryngeal squamous cell carcinoma. Eur Rev Med Pharmacol Sci 20(24):5137–5142PubMedGoogle Scholar
  15. 15.
    Xu X et al (2018) Dynamic changes in plasma microRNAs have potential predictive values in monitoring recurrence and metastasis of nasopharyngeal carcinoma. BioMed Res Int 2018:7329195PubMedPubMedCentralGoogle Scholar
  16. 16.
    Yan Y et al (2017) Circulating miRNAs as biomarkers for oral squamous cell carcinoma recurrence in operated patients. Oncotarget 8(5):8206–8214CrossRefPubMedGoogle Scholar
  17. 17.
    Rabinowits G et al (2017) Comparative analysis of microRNA expression among benign and malignant tongue tissue and plasma of patients with tongue cancer. Front Oncol 7:191CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Summerer I et al (2015) Circulating microRNAs as prognostic therapy biomarkers in head and neck cancer patients. Br J Cancer 113(1):76–82CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Martinez BV et al (2015) Circulating small non coding RNA signature in head and neck squamous cell carcinoma. Oncotarget 6(22):19246–19263CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Wei L, Mao M, Liu H (2016) Droplet digital PCR and qRT-PCR to detect circulating miR-21 in laryngeal squamous cell carcinoma and pre-malignant laryngeal lesions. Acta Oto-laryngologica 136(9):923–932CrossRefPubMedGoogle Scholar
  21. 21.
    Summerer I et al (2013) Changes in circulating microRNAs after radiochemotherapy in head and neck cancer patients. Radiat Oncol 8:296CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gourzones C et al (2013) Consistent high concentration of the viral microRNA BART17 in plasma samples from nasopharyngeal carcinoma patients—evidence of non-exosomal transport. Virol J 10:119CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hsu CM et al (2012) Circulating miRNA is a novel marker for head and neck squamous cell carcinoma. Tumour Biol 33(6):1933–1942CrossRefPubMedGoogle Scholar
  24. 24.
    Gourzones C et al (2010) Extra-cellular release and blood diffusion of BART viral micro-RNAs produced by EBV-infected nasopharyngeal carcinoma cells. Virol J 7:271CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ries J et al (2017) Prognostic significance of altered miRNA expression in whole blood of OSCC patients. Oncol Rep 37(6):3467–3474CrossRefPubMedGoogle Scholar
  26. 26.
    Lerner C et al (2016) Characterization of miR-146a and miR-155 in blood, tissue and cell lines of head and neck squamous cell carcinoma patients and their impact on cell proliferation and migration. J Cancer Res Clin Oncol 142(4):757–766CrossRefPubMedGoogle Scholar
  27. 27.
    Ries J et al (2014) Alterations in miRNA expression patterns in whole blood of OSCC patients. In vivo 28(5):851–861PubMedGoogle Scholar
  28. 28.
    Ries J et al (2014) miR-186, miR-3651 and miR-494: potential biomarkers for oral squamous cell carcinoma extracted from whole blood. Oncol Rep 31(3):1429–1436CrossRefPubMedGoogle Scholar
  29. 29.
    Sun G et al (2018) miR-200b-3p in plasma is a potential diagnostic biomarker in oral squamous cell carcinoma. Biomarkers 23(2):137–141CrossRefPubMedGoogle Scholar
  30. 30.
    Schneider A et al (2018) Tissue and serum microRNA profile of oral squamous cell carcinoma patients. Sci Rep 8(1):675CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Xu H et al (2016) Serum miR-483-5p: a novel diagnostic and prognostic biomarker for patients with oral squamous cell carcinoma. Tumour Biol 37(1):447–453CrossRefPubMedGoogle Scholar
  32. 32.
    Sun L et al (2016) Association of decreased expression of serum miR-9 with poor prognosis of oral squamous cell carcinoma patients. Med Sci Monit 22:289–294CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yu Q et al (2015) Up-regulation of serum miR-744 predicts poor prognosis in patients with nasopharyngeal carcinoma. Int J Clin Exp Med 8(8):13296–13302PubMedPubMedCentralGoogle Scholar
  34. 34.
    Hou B et al (2015) Circulating microRNAs as novel prognosis biomarkers for head and neck squamous cell carcinoma. Cancer Biol Ther 16(7):1042–1046CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Tachibana H et al (2016) Circulating miR-223 in oral cancer: its potential as a novel diagnostic biomarker and therapeutic target. PLoS ONE 11(7):e0159693CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Liu N et al (2014) A four-miRNA signature identified from genome-wide serum miRNA profiling predicts survival in patients with nasopharyngeal carcinoma. Int J Cancer 134(6):1359–1368CrossRefPubMedGoogle Scholar
  37. 37.
    Zeng X et al (2012) Circulating miR-17, miR-20a, miR-29c, and miR-223 combined as non-invasive biomarkers in nasopharyngeal carcinoma. PLoS ONE 7(10):e46367CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Maclellan SA et al (2012) Differential expression of miRNAs in the serum of patients with high-risk oral lesions. Cancer Med 1(2):268–274CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Liang S et al (2016) Increased serum level of MicroRNA-663 is correlated with poor prognosis of patients with nasopharyngeal carcinoma. Dis Markers 2016:7648215CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Plieskatt JL et al (2014) Methods and matrices: approaches to identifying miRNAs for nasopharyngeal carcinoma. J Trans Med 12:3CrossRefGoogle Scholar
  41. 41.
    He Y et al (2015) Current state of circulating microRNAs as cancer biomarkers. Clin Chem 61(9):1138–1155CrossRefPubMedGoogle Scholar
  42. 42.
    Lopez S et al (2018) A microRNA expression signature of the postprandial state in response to a high-saturated-fat challenge. J Nutr Biochem 57:45–55CrossRefPubMedGoogle Scholar
  43. 43.
    Zhang S et al (2016) Roles of microRNA-124a and microRNA-30d in breast cancer patients with type 2 diabetes mellitus. Tumour Biol 37(8):11057–11063CrossRefPubMedGoogle Scholar
  44. 44.
    Su Z, Hou XK, Wen QP (2014) Propofol induces apoptosis of epithelial ovarian cancer cells by upregulation of microRNA let-7i expression. Eur J Gynaecol Oncol 35(6):688–691PubMedGoogle Scholar
  45. 45.
    Zhang J et al (2013) Propofol induces apoptosis of hepatocellular carcinoma cells by upregulation of microRNA-199a expression. Cell Biol Int 37(3):227–232CrossRefPubMedGoogle Scholar
  46. 46.
    Tanaka S et al (2012) Changes in microRNA expression in rat lungs caused by sevoflurane anesthesia: a TaqMan(R) low-density array study. Biomed Res 33(5):255–263CrossRefPubMedGoogle Scholar
  47. 47.
    Yi W et al (2016) Sevoflurane inhibits the migration and invasion of glioma cells by upregulating microRNA-637. Int J Mol Med 38(6):1857–1863CrossRefPubMedGoogle Scholar
  48. 48.
    Glinge C et al (2017) Stability of circulating blood-based microRNAs—pre-analytic methodological considerations. PLoS ONE 12(2):e0167969CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Zhao H et al (2014) Effects of preanalytic variables on circulating microRNAs in whole blood. Cancer Epidemiol Biomarkers Prev 23(12):2643–2648CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Binderup HG et al (2018) Quantification of microRNA levels in plasma—impact of preanalytical and analytical conditions. PLoS ONE 13(7):e0201069CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kirschner MB et al (2011) Haemolysis during sample preparation alters microRNA content of plasma. PLoS ONE 6(9):e24145CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Jorge K et al (2017) Characterization of microRNA expression profiles and identification of potential biomarkers in leprosy. J Clin Microbiol 55(5):1516–1525CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Otorhinolaryngology-Head and Neck SurgeryFlinders Medical CentreBedford ParkAustralia
  2. 2.Discipline of Surgery, College of Medicine and Public HealthFlinders UniversityBedford ParkAustralia
  3. 3.Flinders Centre for Innovation in Cancer, College of Medicine and Public HealthFlinders UniversityBedford ParkAustralia

Personalised recommendations