Clinical & Experimental Metastasis

, Volume 35, Issue 5–6, pp 413–418 | Cite as

Frontiers of cancer imaging and guided therapy using ultrasound, light, and microwaves

  • Russell S. WitteEmail author
  • Chandra Karunakaran
  • Andres N. Zuniga
  • Hannah Schmitz
  • Hina Arif


This review describes emerging techniques within the last 5 years that employ ultrasound for detecting and staging malignancy, tracking metastasis, and guiding treatment. Ultrasound elastography quantifies soft tissue elastic properties that change as a tumor grows and proliferates. Hybrid imaging modalities that combine ultrasound with light or microwave energy provide novel contrast for mapping blood oxygen saturation, transport of particles through lymphatic vessels and nodes, and real-time feedback for guiding needle biopsies. Combining these methods with smart nanoparticles and contrast agents further promotes new paradigms for cancer imaging and therapy.


Photoacoustic imaging Thermoacoustic imaging Ultrasound Elastography Shear wave imaging Image-guided therapy Personalized medicine 


  1. 1.
    Barr RG, Destounis S, Lackey LB, Svensson WE, Balleyguier C, Smith C (2012) Evaluation of breast lesions using sonographic elasticity imaging: a multicenter trial. J Ultrasound Med 31(2):281–287CrossRefGoogle Scholar
  2. 2.
    Sayed A, Layne G, Abraham J, Mukdadi OM (2014) 3-D visualization and non-linear tissue classification of breast tumors using ultrasound elastography in vivo. Ultrasound Med Biol 40(7):1490–1502CrossRefGoogle Scholar
  3. 3.
    Yang Y, Xu X, Guo L, He Y, Wang D, Liu B, Zhao C, Chen B, Xu H (2017) Qualitative and quantitative analysis with a novel shear wave speed imaging for differential diagnosis of breast lesions. Sci Rep 7:40964CrossRefGoogle Scholar
  4. 4.
    Leemans CR, Tiwari R, Nauta JJ, van der Waal I, Snow GB (1993) Regional lymph node involvement and its significance in the development of distant metastases in head and neck carcinoma. Cancer 71(2):452–456CrossRefGoogle Scholar
  5. 5.
    Ho F, Tham IW, Earnest A, Lee KM, Lu JJ (2012) Patterns of regional lymph node metastasis of nasopharyngeal carcinoma: a meta-analysis of clinical evidence. BMC Cancer 12:98CrossRefGoogle Scholar
  6. 6.
    Azizi G, Keller JM, Mayo ML, Piper K, Puett D, Earp KM, Malchoff CD (2016) Shear wave elastography and cervical lymph nodes: predicting malignancy. Ultrasound Med Biol 42(6):1273–1281CrossRefGoogle Scholar
  7. 7.
    Chen BB, Li J, Guan Y, Xiao WW, Zhao C, Lu TX, Han F (2018) The value of shear wave elastography in predicting for undiagnosed small cervical lymph node metastasis in nasopharyngeal carcinoma: a preliminary study. Eur J Radiol 103:19–24CrossRefGoogle Scholar
  8. 8.
    Ting CE, Yeong CH, Ng KH, Abdulla BJJ, Ting HE (2015) Accuracy of tissue elasticity measurement using shear wave ultrasound elastography: a comparative phantom study. In: World congress on medical physics and biomedical engineering. Springer, Toronto, pp 252–255Google Scholar
  9. 9.
    Menezes GLG, Pijnappel RM, Meeuwis C, Bisschops R, Veltman J, Lavin PT, van de Vijver MJ, Mann RM (2018) Downgrading of breast masses suspicious for cancer by using optoacoustic breast imaging. Radiology 17:170500Google Scholar
  10. 10.
    Lin L, Hu P, Shi J, Appleton CM, Maslov K, Li L, Zhang R, Wang LV (2018) Single-breath-hold photoacoustic computed tomography of the breast. Nat Commun 9(1):2352CrossRefGoogle Scholar
  11. 11.
    Garcia-Uribe A, Erpelding TN, Krumholz A, Ke H, Maslov K, Appleton C, Margenthaler JA, Wang LV (2015) Dual-modality photoacoustic and ultrasound imaging system for noninvasive sentinel lymph node detection in patients with breast cancer. Sci Rep 5:15748CrossRefGoogle Scholar
  12. 12.
    Forbrich A, Heinmiller A, Zemp RJ (2017) Photoacoustic imaging of lymphatic pumping. J Biomed Opt 22(10):106003CrossRefGoogle Scholar
  13. 13.
    Stoffels I, Morscher S, Helfrich I, Hillen U, Leyh J, Burton NC, Sardella TC, Claussen J, Poeppel TD, Bachmann HS, Roesch A, Griewank K, Schadendorf D, Gunzer M, Klode J (2015) Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging. Sci Transl Med 7(317):317ra199CrossRefGoogle Scholar
  14. 14.
    Luke GP, Myers JN, Emelianov SY, Sokolov KV (2014) Sentinel lymph node biopsy revisited: ultrasound-guided photoacoustic detection of micrometastases using molecularly targeted plasmonic nanosensors. Cancer Res 74(19):5397–5408CrossRefGoogle Scholar
  15. 15.
    Yang L, Cheng J, Chen Y, Yu S, Liu F, Sun Y, Chen Y, Ran H (2017) Phase-transition nanodroplets for real-time photoacoustic/ultrasound dual-modality imaging and photothermal therapy of sentinel lymph node in breast cancer. Sci Rep 7:45213CrossRefGoogle Scholar
  16. 16.
    Kruger RA, Miller KD, Reynolds HE, Kiser WL, Reinecke DR, Kruger GA (2000) Breast cancer in vivo: contrast enhancement with thermoacoustic CT at 434 MHz—feasibility study. Radiology 216(1):279–283CrossRefGoogle Scholar
  17. 17.
    Razansky D, Kellnberger S, Ntziachristos V (2010) Near-field radiofrequency thermoacoustic tomography with impulse excitation. Med Phys 37(9):4602–4607CrossRefGoogle Scholar
  18. 18.
    Lou C, Yang S, Ji Z, Chen Q, Xing D (2012) Ultrashort microwave-induced thermoacoustic imaging: a breakthrough in excitation efficiency and spatial resolution. Phys Rev Lett 109:218101Google Scholar
  19. 19.
    Ye F, Ji Z, Ding W, Lou C, Yang S, Xing D (2016) Ultrashort microwave-pumped real-time thermoacoustic breast tumor imaging system. IEEE Trans Med Imaging 35(3):839–844CrossRefGoogle Scholar
  20. 20.
    Wen L, Yang S, Zhong J, Zhou Q, Xing D (2017) Thermoacoustic imaging and therapy guidance based on ultra short pulsed microwave pumped thermoelastic effect induced with superparamagnetic iron oxide nanoparticles. Theranostics 7(7):1976–1989CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of RadiologyUniversity of ArizonaTucsonUSA

Personalised recommendations