The impacts of extreme El Niño events on sea turtle nesting populations

  • P. Santidrián TomilloEmail author
  • L. G. Fonseca
  • M. Ward
  • N. Tankersley
  • N. J. Robinson
  • C. M. Orrego
  • F. V. Paladino
  • V. S. Saba


The El Niño Southern Oscillation (ENSO) is the predominant interannual pattern of climate variability in the world and may become extreme approximately once every 20 years. Climate-forced interannual variability in fecundity rates of long-lived species are well-studied, but the effect of extreme events is less clear. Here, we analyzed the effect of the extreme 2015–16 El Niño event on three long-lived sea turtle species in a region highly influenced by ENSO. The effect of this extreme event varied considerably among species. While reproductive success dramatically declined in leatherback turtles (Dermochelys coriacea), the reduction was only marginal in green turtles (Chelonia mydas). Nevertheless, the number of nesting green turtles decreased following the extreme El Niño event, likely due to decreased ocean productivity. We used global climate models to project an increase in the decadal occurrence of extreme events from ~ 0.7 events (beginning of twentieth century) to ~ 2.9 events per decade (end of twenty-first century). This resulted in a projected decline in the reproductive success of leatherback turtles (~ 19%), a milder decline in olive ridley turtles (Lepidochelys olivacea) (~ 7%), and no decline in green turtles (~ 1%). Extreme El Niño events can have a strong detrimental effect on East Pacific leatherback turtles, a population that is already critically endangered due to other anthropogenic impacts. Our results highlight the importance of conducting species-specific and site-specific analyses of climatic impacts on sea turtles.


ENSO Extreme events Long-lived Sea turtles Reproductive success Climate change 



We thank all field coordinators, assistants, and volunteers that contributed to the data collection over the years at the various projects. We thank the Ministry of Environment and Energy of Costa Rica for providing research permits and Roger Blanco and Roberto Zúñiga for facilitating the process.

Author contributions

PST, LGF, MW, NT and NJR discussed the implications of the extreme 2015–16 El Niño event in Costa Rica and conceived the study. PST, NJR and FVP led and provided data for the projects at Cabuyal and Playa Grande, LGF led and provided data for the projects at Nancite and Isla San José, MW and NT led and provided data for Punta Pargos and CMO led and provided data for Ostional. VSS advised and assisted with the projections of extreme events. PST wrote the manuscript with input from all authors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. Barnard PL, Hoover D, Hubbard DM et al (2017) Extreme oceanographic forcing and coastal response due to the 2015-2016 El Niño. Nat Commun 8:14365CrossRefGoogle Scholar
  2. Broderick AC, Godley BJ, Hays GC (2001) Trophic status drives interannual variability in nesting numbers of marine turtles. Proc R Soc Lond B 268:1481–1487CrossRefGoogle Scholar
  3. Cai W, Borlace S, Lengaigne M et al (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Chang 4:111–116CrossRefGoogle Scholar
  4. Cai W, Wang G, Santoso A et al (2015) Increased frequency of extreme La Niña events under greenhouse warming. Nat Clim Chang 5:132–137CrossRefGoogle Scholar
  5. Chavez FP, Strutton PG, Friederich GE, Feely RA, Feldman GC, Foley DG, McFadyen MJ (1999) Biological and chemical response of the equatorial Pacific Ocean to the 1997-98 El Niño. Science 286:2126–2131CrossRefGoogle Scholar
  6. Dornfeld TC, Robinson NJ, Santidrián Tomillo P, Paladino FV (2015) Ecology of solitary nesting olive ridley sea turtles at Playa Grande, Costa Rica. Mar Biol 162:123–139CrossRefGoogle Scholar
  7. Fonseca LG, Murillo GA, Guadamúz L, Spínola RM, Valverde RA (2009) Downward but stable trend in the abundance of arribada olive ridley sea turtles (Lepidochelys olivacea) at Nancite beach, Costa Rica (1971-2007). Chelonian Conserv Biol 8:19–27CrossRefGoogle Scholar
  8. Fonseca MG, Anderson LO, Arai E et al (2017) Climatic and anthropogenic drivers of northern Amazon fires during the 2015-2016 El Niño event. Ecol Appl 27:2514–2527CrossRefGoogle Scholar
  9. Gaillard JM, Festa-Bianchet M, Yoccoz NG (1998) Population dynamics of large herbivores: variable recruitment with constant adult survival. Trends Ecol Evol 13:58–63CrossRefGoogle Scholar
  10. Gates CE, Valverde RA, Mo CL, Chaves AC, Ballestero J, Peskin J (1996) Estimating arribada size using a modified instantaneous count procedure. J Agric Biol Environ Stat 1:275–287CrossRefGoogle Scholar
  11. Heppell SS, Snover ML, Crowder LB (2003) Sea turtle population ecology. In: Lutz PL, Musick JA, Wyneken J (eds) The biology of sea turtles, vol II. CRC Press, Boca Raton, pp 275–306Google Scholar
  12. Honarvar S, O’Connor MP, Spotila JR (2008) Density-dependent effects on hatching success of the olive ridley tutle, Lepidochelys olivacea. Oecologia 157:221–230CrossRefGoogle Scholar
  13. Howard R, Bell II, Pike DA (2014) Thermal tolerances of sea turtle embryos: current understanding and future directions. Endanger Species Res 26:75–86CrossRefGoogle Scholar
  14. IBM Corp. Released (2016) IBM SPSS statistics for Macintosh. Version 24.0. IBM Corp, ArmonkGoogle Scholar
  15. IPCC. Climate Change (2013) In: Stocker TF et al (eds) The Physical Science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, CambridgeGoogle Scholar
  16. Miller JD (1999) Determining clutch size and hatching success. In: Eckert KL, Bjorndal KA, Abreu-Grobois FA, Donnelly M (eds) Research and management techniques for the conservation of sea turtles, IUCN/SSC marine turtle specialist group publication, vol 4, pp 124–129Google Scholar
  17. Montero N, Santidrián Tomillo P, Saba V, Marcovaldi MAG, López-Mendilaharsu M, Santos AS, Fuentes MMPB (2019) Effects of local climate on loggerhead hatchling production in Brazil: implications from climate change. Sci Rep 9:8861CrossRefGoogle Scholar
  18. Philander SGH (1983) El Niño southern oscillation phenomena. Nature 302:295–301CrossRefGoogle Scholar
  19. Plot V, Jenkins T, Robin JP, Fossette S, Georges JY (2013) Leatherback turtles are capital breeders: morphometric and physiological evidence from longitudinal monitoring. Physiol Biochem Zool 86:385–397CrossRefGoogle Scholar
  20. Plotkin PT, Byles RA, Rostal DC, Owens DW (1995) Independent versus socially facilitated oceanic migrations of the olive ridley, Lepidochelys olivacea. Mar Biodivers 122:137–143Google Scholar
  21. R Development Core Team R (2018) A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing)Google Scholar
  22. Rasmusson EM, Wallace JM (1983) Meteorological aspects of the El Niño/southern oscillation. Science 222:1195–1202CrossRefGoogle Scholar
  23. Retana JA, Rosales R (2000) Efecto de la variabilidad climática en la Región Chorotega sobre la producción bovina de carne en Costa Rica. Rev Top Meteoro Oceanog 7:1–20Google Scholar
  24. Rivalan P, Prévot-Julliard AC, Choquet R, Pradel R, Jacquemin B, Girondot M (2005) Trade-off between current reproductive effort and delay to next reproduction in the leatherback sea turtle. Oecologia 145:564–574CrossRefGoogle Scholar
  25. Rivas ML, Spínola M, Arrieta H, Faife-Cabrera M (2018) Effect of extreme climatic events resulting in prolonged precipitation on the reproductive output of sea turtles. Anim Conserv 21:387–395CrossRefGoogle Scholar
  26. Saba VS, Santidrián Tomillo P, Reina R, Spotila J, Musick J, Evans D, Paladino F (2007) The effect of the El Niño southern oscillation on the reproductive frequency of eastern Pacific leatherback turtles. J Appl Ecol 44:395–404CrossRefGoogle Scholar
  27. Saba VS, Spotila JR, Chavez FP, Musick JA (2008) Bottom-up and climatic forcing on the worldwide population of leatherback turtles. Ecology 89:1414–1427CrossRefGoogle Scholar
  28. Saba VS, Stock CA, Paladino FV, Spotila JR, Santidrián Tomillo P (2012) Population response of an endangered marine vertebrate to climate change. Nat Clim Chang 2:814–820CrossRefGoogle Scholar
  29. Santidrián Tomillo P, Saba VS, Piedra R, Paladino FV, Spotila JR (2008) Effects of illegal harvest of eggs on the population decline of leatherback turtles in Las Baulas Marine National Park, Costa Rica. Conserv Biol 22:1216–1224CrossRefGoogle Scholar
  30. Santidrián Tomillo P, Suss SJ, Wallace BP, Magrini KD, Blanco G, Paladino FV, Spotila JR (2009) Influence of emergence success on the annual reproductive output of leatherback turtles. Mar Biol 156:2021–2031CrossRefGoogle Scholar
  31. Santidrián Tomillo P, Saba VS, Blanco GS, Stock CA, Paladino FV, Spotila JR (2012) Climate driven egg and hatchling mortality threaten survival of Eastern Pacific leatherback turtles. PLoS One 7(5):e37602CrossRefGoogle Scholar
  32. Santidrián Tomillo P, Roberts SA, Hernández R, Spotila JR, Paladino FV (2015a) Nesting ecology of East Pacific green turtles at playa Cabuyal, gulf of Papagayo, Costa Rica. Mar Ecol 36:506–516CrossRefGoogle Scholar
  33. Santidrián Tomillo P, Saba VS, Lombard et al (2015b) Global analysis of the effect of local climate on the hatchling output of leatherback turtles. Sci Rep 5:16789CrossRefGoogle Scholar
  34. Santidrián Tomillo P, Robinson NJ, Fonseca LG et al (2017a) Secondary nesting beaches for leatherback turtles on the Pacific coast of Costa Rica. LAJAR 45:563–571CrossRefGoogle Scholar
  35. Santidrián Tomillo P, Robinson NJ, Sanz-Aguilar A, Spotila JR, Paladino FV, Tavecchia G (2017b) High and variable mortality of leatherback turtles reveal possible anthropogenic impacts. Ecology 98:2170–2179CrossRefGoogle Scholar
  36. Santoso A, McPhaden MJ, Cai W (2017) The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev Geophys 55:1079–1129CrossRefGoogle Scholar
  37. Seminoff JA, Resendiz A, Nichols WJ (2002) Diet of East Pacific green turtles (Chelonia mydas) in the Central Gulf of California, México. J Helpetol 36:447–453CrossRefGoogle Scholar
  38. Solow AR, Bjorndal KA, Bolten AB (2002) Annual variation in nesting numbers of marine turtles: the effect of sea surface temperature on re-migration intervals. Ecol Lett 5:742–746CrossRefGoogle Scholar
  39. Spotila JR (2004) Sea turtles: a complete guide to their biology, behavior and conservation. John Hopkins Press, BaltimoreGoogle Scholar
  40. Spotila JR, Reina RD, Steyermark AC, Plotkin PT, Paladino FV (2000) Pacific leatherback turtles face extinction. Nature 405:529–530CrossRefGoogle Scholar
  41. Stenseth NC, Mysterud A, Ottersen G, Hurrell JW, Chan KS, Lima M (2002) Ecological effect of climate fluctuations. Science 297:1292–1296CrossRefGoogle Scholar
  42. Valverde RA, Wingard S, Gómez F, Tordoir MT, Orrego CM (2010) Field lethal incubation temperature of olive ridley sea turtle Lepidochelys olivacea embryos at a mass nesting rookery. Endanger Species Res 12:77–86CrossRefGoogle Scholar
  43. Valverde RA, Orrego CM, Tordoir MT et al (2012) Olive ridley mass nesting ecology and egg harvest at Ostional beach, Costa Rica. Chelonian Conserv Bi 11:1–11CrossRefGoogle Scholar
  44. Van Buskirk J, Crowder LB (1994) Life-history variation in marine turtles. Copeia 1994:66–81CrossRefGoogle Scholar
  45. Wallace BP, Tiwari M, Girondot M (2013) Dermochelys coriacea (East Pacific Ocean subpopulation). The IUCN Red List of Threatened Species. Downloaded 20 March 2019Google Scholar
  46. Wang G, Cai W, Gan B et al (2017) Continued increase of extreme El Niño frequency long after 1.5°C warming stabilization. Nat Clim Chang 7:568–572CrossRefGoogle Scholar
  47. Waylen PR, Caviedes CN, Quesada ME (1996) Interannual variability of monthly precipitation in Costa Rica. J Clim 9:2606–2613CrossRefGoogle Scholar
  48. Wolter K, Timlin MS (2011) El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int J Climatol 31:1074–1087CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.The Leatherback Trust, Goldring-Gund Marine Biology StationPlaya GrandeCosta Rica
  2. 2.Latin American Sea TurtlesSan JoséCosta Rica
  3. 3.Sea Turtles ForeverSeasideUSA
  4. 4.Cape Eleuthera Institute, Cape Eleuthera Island SchoolEleutheraBahamas
  5. 5.Ministry of Environment and EnergySan JoséCosta Rica
  6. 6.Purdue UniversityFort WayneUSA
  7. 7.National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northeast Fisheries Science Center, Geophysical Fluid Dynamics LaboratoryPrinceton UniversityPrincetonUSA

Personalised recommendations