Advertisement

Climatic Change

, Volume 155, Issue 4, pp 545–561 | Cite as

Not all carbon dioxide emission scenarios are equally likely: a subjective expert assessment

  • Emily HoEmail author
  • David V. Budescu
  • Valentina Bosetti
  • Detlef P. van Vuuren
  • Klaus Keller
Article

Abstract

Climate researchers use carbon dioxide emission scenarios to explore alternative climate futures and potential impacts, as well as implications of mitigation and adaptation policies. Often, these scenarios are published without formal probabilistic interpretations, given the deep uncertainty related to future development. However, users often seek such information, a likely range or relative probabilities. Without further specifications, users sometimes pick a small subset of emission scenarios and/or assume that all scenarios are equally likely. Here, we present probabilistic judgments of experts assessing the distribution of 2100 emissions under a business-as-usual and a policy scenario. We obtain the judgments through a method that relies only on pairwise comparisons of various ranges of emissions. There is wide variability between individual experts, but they clearly do not assign equal probabilities for the total range of future emissions. We contrast these judgments with the emission projection ranges derived from the shared socio-economic pathways (SSPs) and a recent multi-model comparison producing probabilistic emission scenarios. Differences on long-term emission probabilities between expert estimates and model-based calculations may result from various factors including model restrictions, a coverage of a wider set of factors by experts, but also group think and inability to appreciate long-term processes.

Notes

Funding information

David Budescu’s work was supported in part by Grant 2015206 from the Binational Science Foundation, USA-Israel. Valentina Bosetti acknowledges funding from the European Research Council under the European Community’s Programme “Ideas” - Call identifier: ERC-2013-StG / ERC grant agreement n° 336703– project RISICO “RISk and uncertainty in developing and Implementing Climate change pOlicies”. Klaus Keller’s work was supported by the Penn State Center for Climate Risk Management. We gratefully acknowledge Mark Himmelstein for coding assistance for the first study. Any conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies.

Supplementary material

10584_2019_2500_MOESM1_ESM.docx (1.3 mb)
ESM 1 (DOCX 1335 kb)

References

  1. Anadon LD, Baker E, Bosetti V, Aleluia Reis L (2016) Expert views - and disagreements - about the potential of energy technology R&D. Clim Chang 136:677–691.  https://doi.org/10.1007/s10584-016-1626-0 CrossRefGoogle Scholar
  2. Ariely D, Loewenstein G, Prelec D (2003) “Coherent arbitrariness”: stable demand curves without stable preferences. Q J Econ 118:73–106.  https://doi.org/10.1162/00335530360535153 CrossRefGoogle Scholar
  3. Arrow KJ, Fisher AC (1974) Environmental preservation, uncertainty, and irreversibility. Q J Econ 88:312–319.  https://doi.org/10.2307/1883074 CrossRefGoogle Scholar
  4. Arrow K, Bolin B, Costanza R et al (1995) Economic growth, carrying capacity, and the environment. Ecol Econ 15:91–95.  https://doi.org/10.1016/0921-8009(95)00059-3 CrossRefGoogle Scholar
  5. Bakker AMR, Louchard D, Keller K (2017a) Sources and implications of deep uncertainties surrounding sea-level projections. Clim Chang 140:339–347.  https://doi.org/10.1007/s10584-016-1864-1 CrossRefGoogle Scholar
  6. Bakker AMR, Wong TE, Ruckert KL, Keller K (2017b) Sea-level projections representing the deeply uncertain contribution of the West Antarctic ice sheet. Sci Rep 7.  https://doi.org/10.1038/s41598-017-04134-5
  7. Bamber JL, Aspinall WP (2013) An expert judgement assessment of future sea level rise from the ice sheets. Nat Clim Chang 3:424–427.  https://doi.org/10.1038/nclimate1778 CrossRefGoogle Scholar
  8. Berger L, Emmerling J, Tavoni M (2017) Managing catastrophic climate risks under model uncertainty aversion. Manag Sci 63:749–765.  https://doi.org/10.1287/mnsc.2015.2365 CrossRefGoogle Scholar
  9. Bernoulli J (1896) Wahrrscheinlichkeitsrechnung, third and fourth parts. Ostwald, Klassiker der exakten Wissenschaften 108Google Scholar
  10. Bosetti V, Weber E, Berger L et al (2017) COP21 climate negotiators’ responses to climate model forecasts. Nat Clim Chang 7.  https://doi.org/10.1038/nclimate3208
  11. Broomell SB, Budescu DV (2009) Why are experts correlated? Decomposing correlations between judges. Psychometrika 74:531–553.  https://doi.org/10.1007/s11336-009-9118-z CrossRefGoogle Scholar
  12. Burke M, Hsiang SM, Miguel E (2015) Global non-linear effect of temperature on economic production. Nature 527:235–239.  https://doi.org/10.1038/nature15725 CrossRefGoogle Scholar
  13. Butler MP, Reed PM, Fisher-Vanden K et al (2014a) Inaction and climate stabilization uncertainties lead to severe economic risks. Clim Chang 127:463–474.  https://doi.org/10.1007/s10584-014-1283-0 CrossRefGoogle Scholar
  14. Butler MP, Reed PM, Fisher-Vanden K, Keller K, Wagener T (2014b) Identifying parametric controls and dependencies in integrated assessment models using global sensitivity analysis. Environ Model Softw 59:10–29.  https://doi.org/10.1016/j.envsoft.2014.05.001 CrossRefGoogle Scholar
  15. Christensen P, Gillingham K, Nordhaus W (2018) Uncertainty in forecasts of long-run productivity growth. Proc Natl Acad Sci 115(2):5409–5414CrossRefGoogle Scholar
  16. Clarke L, Jiang K, Akimoto K, Babiker M, Blanford G, Fisher-Vanden K, Hourcade J-C, Krey V, Kriegler E, Löschel A, McCollum D, Paltsev S, Rose S, Shukla PR, Tavoni M, van der Zwaan BCC, van Vuuren DP (2014) Assessing transformation pathways. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) In: climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University press, CambridgeGoogle Scholar
  17. Cooke RM, Nauta M, Havelaar AH, van der Fels I (2006) Probabilistic inversion for chicken processing lines. Reliab Eng Syst Saf 91:1364–1372.  https://doi.org/10.1016/j.ress.2005.11.054 CrossRefGoogle Scholar
  18. Crawford G, Williams C (1985) A note on the analysis of subjective judgment matrices. J Math Psychol 29:387–405.  https://doi.org/10.1016/0022-2496(85)90002-1 CrossRefGoogle Scholar
  19. de Laplace PS (1814) Theorie analytique des probabilities (Paris)Google Scholar
  20. Draper D (1995) Assessment and propagation of model uncertainty. J R Stat Soc Ser B Methodol 57:45–97.  https://doi.org/10.1111/j.2517-6161.1995.tb02015.x Google Scholar
  21. Einhorn HJ (1972) Expert measurement and mechanical combination. Organizational Behavior and Human Performance 7:86–106.  https://doi.org/10.1016/0030-5073(72)90009-8 CrossRefGoogle Scholar
  22. Fan Y (2018) Estimating subjective probabilities of bounded continuous distributions using the ratio judgment and scaling (RJS) method. Dissertation, Fordham UniversityGoogle Scholar
  23. Fox CR, Bardolet D, Lieb D (2005) Partition dependence in decision analysis, resource allocation, and consumer choice. In: Experimental business research. Springer, pp 229–251. ISBN: 10-0-387-24215-5Google Scholar
  24. Fuller RW, Wong TE, Keller K (2017) Probabilistic inversion of expert assessments to inform projections about Antarctic ice sheet responses. PLoS One.  https://doi.org/10.1371/journal.pone.0190115
  25. Gasser T, Guivarch C, Tachiiri K, et al (2015) Negative emissions physically needed to keep global warming below 2 °C. Nat Commun 6. doi:  https://doi.org/10.1038/ncomms8958
  26. Gillingham K, Nordhaus W, David Anthoff GB, Bosetti V, Christensen P, McJeon H, Reilly J (2018) Modeling uncertainty in integrated assessment of climate change: a multi-model comparison. J Assoc Environ Resour Econ 5(4):791–826.  https://doi.org/10.1086/698910 Google Scholar
  27. Goes M, Tuana N, Keller K (2011) The economics (or lack thereof) of aerosol geoengineering. Clim Chang 109:719–744.  https://doi.org/10.1007/s10584-010-9961-z CrossRefGoogle Scholar
  28. Hall JW, Lempert RJ, Keller K, Hackbarth A, Mijere C, McInerney DJ (2012) Robust climate policies under uncertainty: a comparison of robust decision making and info-gap methods. Risk Anal 32:1657–1672.  https://doi.org/10.1111/j.1539-6924.2012.01802.x
  29. IPCC (2008) Towards new scenarios for analysis of emissions, climate change, impacts and response strategies: IPCC expert meeting report, 19-21 September 2007, Noordwijkerhout, the Netherlands ISBN: 978-92-9169-125-8Google Scholar
  30. IPCC (2018) Annex I: Glossary [Matthews, J.B.R. (ed.)]. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]Google Scholar
  31. Joeri Rogelj, William Hare, Jason Lowe, Detlef P. van Vuuren, Keywan Riahi, Ben Matthews, Tatsuya Hanaoka, Kejun Jiang, Malte Meinshausen, (2011) Emission pathways consistent with a 2 °C global temperature limit. Nature Climate Change 1 (8):413-418Google Scholar
  32. Jonkman SN, Hillen MM, Nicholls RJ et al (2013) Costs of adapting coastal defences to sea-level rise— new estimates and their implications. J Coast Res 290:1212–1226.  https://doi.org/10.2112/JCOASTRES-D-12-00230.1 CrossRefGoogle Scholar
  33. Keller K, Nicholas R (2015) Improving climate projections to better inform climate risk management. In: Bernard L, Semmler W (eds) The Oxford handbook of the macroeconomics of global warming. Oxford University Press. doi:  https://doi.org/10.1093/oxfordhb/9780199856978.013.0002
  34. Lempert RJ (2002) A new decision sciences for complex systems. Proc Natl Acad Sci 99:7309–7313.  https://doi.org/10.1073/pnas.082081699 CrossRefGoogle Scholar
  35. Lucas P, Hedden S, van Vuuren D (2019) Future Developments Without Targeted Policies. In: Outlooks and Pathways to a Healthy Planet with Healthy People. UN Environment.Google Scholar
  36. Lutz W, Butz WP, S KC (eds) (2014) World population and human capital in the twenty-first century, first edition. Oxford University press, OxfordGoogle Scholar
  37. Mogollón JM, Lassaletta L, Beusen AHW, van Grinsven HJM, Westhoek H, Bouwman AF (2018) Assessing future reactive nitrogen inputs into global croplands based on the shared socioeconomic pathways. Environ Res Lett 13(4):044008CrossRefGoogle Scholar
  38. Morera O, Budescu D (1998) A psychometric analysis of the “divide and conquer” principle in multicriteria decision making. Organ Behav Hum Decis Process 75:187–206.  https://doi.org/10.1006/obhd.1998.2791 CrossRefGoogle Scholar
  39. Morgan MG, Keith DW (1995) Subjective judgments by climate experts. Environ Sci Technol 29:468–476.  https://doi.org/10.1021/es00010a003 Google Scholar
  40. Morgan MG, Adams PJ, Keith DW (2006) Elicitation of expert judgments of aerosol forcing. Clim Chang 75:195–214.  https://doi.org/10.1007/s10584-005-9025-y CrossRefGoogle Scholar
  41. Moss RH, Edmonds JA, Hibbard KA et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756.  https://doi.org/10.1038/nature08823 CrossRefGoogle Scholar
  42. Nakicenovic N, Lempert RJ, Janetos AC (2014) A framework for the development of new socio-economic scenarios for climate change research: introductory essay: a forthcoming special issue of climatic change. Clim Chang 122:351–361.  https://doi.org/10.1007/s10584-013-0982-2 CrossRefGoogle Scholar
  43. Nordhaus W (1994a) Expert opinion on climate change. American scientist 82:45–51. OSTI: 5458592Google Scholar
  44. Nordhaus W (1994b) Managing the global commons. MIT Press, Cambridge ISBN: 9780262140553Google Scholar
  45. Por H-H, Budescu DV (2017) Eliciting subjective probabilities through pair-wise comparisons. J Behav Decis Mak 30:181–196.  https://doi.org/10.1002/bdm.1929 CrossRefGoogle Scholar
  46. Revesz RL, Howard PH, Arrow K et al (2014) Global warming: improve economic models of climate change. Nature 508:173–175.  https://doi.org/10.1038/508173a CrossRefGoogle Scholar
  47. Riahi K, van Vuuren DP, Kriegler E et al (2017) The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob Environ Chang 42:153–168.  https://doi.org/10.1016/j.gloenvcha.2016.05.009 CrossRefGoogle Scholar
  48. Rogelj J, Luderer G, Pietzcker RC et al (2015) Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat Clim Chang 5:519–527.  https://doi.org/10.1038/nclimate2572 CrossRefGoogle Scholar
  49. Schleussner C-F, Rogelj J, Schaeffer M et al (2016) Science and policy characteristics of the Paris agreement temperature goal. Nat Clim Chang 6:827–835.  https://doi.org/10.1038/nclimate3096 CrossRefGoogle Scholar
  50. Schneider SH (2002) Can we estimate the likelihood of climatic changes at 2100? Clim Chang 52:441–451.  https://doi.org/10.1023/A:1014276210717 CrossRefGoogle Scholar
  51. Seale DA, Rapoport A, Budescu DV (1995) Decision making under strict uncertainty: an experimental test of competitive criteria. Organ Behav Hum Decis Process 64:65–75.  https://doi.org/10.1006/obhd.1995.1090 CrossRefGoogle Scholar
  52. Sinn H-W (1980) A rehabilitation of the principle of insufficient reason. Q J Econ 94:493–506.  https://doi.org/10.2307/1884581 CrossRefGoogle Scholar
  53. Sriver RL, Urban NM, Olson R, Keller K (2012) Toward a physically plausible upper bound of sea-level rise projections. Clim Chang 115:893–902.  https://doi.org/10.1007/s10584-012-0610-6 CrossRefGoogle Scholar
  54. Sriver RL, Lempert RJ, Wikman-Svahn P, Keller K (2018) Characterizing uncertain sea-level rise projections to support investment decisions. PLoS One 13(2):e0190641.  https://doi.org/10.1371/journal.pone.0190641 CrossRefGoogle Scholar
  55. Stigler S (1986) Memoir on the probability of the causes of events. Stat Sci 1:364–378.  https://doi.org/10.1214/ss/1177013621 CrossRefGoogle Scholar
  56. Thompson E, Frigg R, Helgeson C (2016) Expert judgment for climate change adaptation. Philos Sci 83:1110–1121.  https://doi.org/10.1086/687942 CrossRefGoogle Scholar
  57. Torgerson WS (1958) Theory and methods of scaling. Wiley, New York ISBN: 0471879452Google Scholar
  58. Tukey JW (1977) Exploratory data analysis. Addison-Wesley Pub. Co, Reading ISBN: 0201076160Google Scholar
  59. Tversky A, Kahneman D (1974) Judgment under uncertainty: heuristics and biases. Science 185:1124–1131.  https://doi.org/10.1126/science.185.4157.1124 CrossRefGoogle Scholar
  60. Tversky A, Koehler DJ (1994) Support theory: a nonextensional representation of subjective probability. Psychol Rev 101:547.  https://doi.org/10.1037/0033-295X.101.4.547 CrossRefGoogle Scholar
  61. van Vuuren DP, Carter TR (2014) Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old. Clim Chang 122:415–429.  https://doi.org/10.1007/s10584-013-0974-2 CrossRefGoogle Scholar
  62. van Vuuren DP, Edmonds J, Kainuma M et al (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31.  https://doi.org/10.1007/s10584-011-0148-z CrossRefGoogle Scholar
  63. Walker WE, Lempert RJ, Kwakkel JH (2013) Deep uncertainty. In: Gass SI, Fu MC (eds) Encyclopedia of operations research and management science. Springer US, Boston, pp 395–402.  https://doi.org/10.1007/978-1-4419-1153-7_1140 CrossRefGoogle Scholar
  64. Webster M, Forest C, Reilly J et al (2003) Uncertainty analysis of climate change and policy response. Clim Chang 61:295–320.  https://doi.org/10.1023/B:CLIM.0000004564.09961.9f CrossRefGoogle Scholar
  65. Weyant J (2017) Some contributions of integrated assessment models of global climate change. Rev Environ Econ Policy 11:115–137.  https://doi.org/10.1093/reep/rew018 CrossRefGoogle Scholar
  66. Wigley TML, Raper SC (2001) Interpretation of high projections for global-mean warming. Science 293:451–454.  https://doi.org/10.1126/science.1061604 CrossRefGoogle Scholar
  67. Wong TE, Keller K (2017) Deep uncertainty surrounding coastal flood risk projections: a case study for New Orleans. Earth’s Future 5:1015–1026.  https://doi.org/10.1002/2017EF000607 CrossRefGoogle Scholar
  68. Wong TE, Bakker AMR, Keller K (2017) Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense. Clim Chang 144:347–364.  https://doi.org/10.1007/s10584-017-2039-4 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Fordham UniversityThe BronxUSA
  2. 2.RFF-CMCC European Institute on Economics and the EnvironmentBocconi UniversityMilanItaly
  3. 3.PBL Netherlands Environmental Assessment AgencyUtrecht UniversityUtrechtNetherlands
  4. 4.Pennsylvania State UniversityState CollegeUSA

Personalised recommendations