Skip to main content

Advertisement

Log in

Impacts of tropospheric ozone and climate change on Mexico wheat production

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Wheat is an important staple crop sensitive to negative effects from elevated tropospheric ozone (O3) concentrations, but the impacts of future O3 concentrations on wheat production in Mexico are unknown. To determine these impacts, the O3-modified DSSAT-NWheat crop model was used to simulate wheat production in Mexico using a baseline scenario with pre-industrial O3 concentrations from 1980 to 2010 and five Global Climate Models (GCMs) under the Representative Concentration Pathway (RCP) 8.5 scenario from 2041 to 2070 paired with future O3 concentrations from the European Monitoring and Evaluation Programme (EMEP) Meteorological Synthesizing Centre–West (MSC-W) model. Thirty-two representative major wheat-producing locations in Mexico were simulated assuming both irrigated and rainfed conditions for two O3 sensitivity cultivar classifications. The simulations showed large variability (after averaging over 30 years) in yield loss, ranging from 7 to 26% because of O3 impact, depending on the location, irrigation, and climate change emissions scenario. After upscaling and aggregating the simulations to the country scale based on observed irrigated and rainfed production, national wheat production for Mexico is expected to decline by 12% under the future RCP 8.5 climate change scenario with additional losses of 7 to 18% because of O3 impact, depending on the cultivar O3 sensitivity. This yield loss caused by O3 is comparable with, or even larger than, the impact from projected future climatic change in temperature, rainfall, and atmospheric CO2 concentration. Therefore, O3 impacts should be considered in future agricultural impact assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ainsworth EA (2017) Understanding and improving global crop response to ozone pollution. Plant J 90:886–897

    Article  Google Scholar 

  • Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD (2012) The effects of tropospheric ozone on net primary productivity and implications for climate change. In: Merchant SS (ed) Annual review of plant biology, Vol 63. Annual Reviews, Palo Alto, pp 637–661

  • Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28:949–964

    Article  Google Scholar 

  • Asseng S, van Herwaarden AF (2003) Analysis of the benefits to wheat yield from assimilates stored prior to grain filling in a range of environments. Plant Soil 256:217–229

    Article  Google Scholar 

  • Asseng S, Keating BA, Fillery IRP, Gregory PJ, Bowden JW, Turner NC, Palta JA, Abrecht DG (1998) Performance of the APSIM-wheat model in Western Australia. Field Crop Res 57:163–179

    Article  Google Scholar 

  • Asseng S, van Keulen H, Stol W (2000) Performance and application of the APSIM Nwheat model in the Netherlands. Eur J Agron 12:37–54

    Article  Google Scholar 

  • Asseng S, Jamieson PD, Kimball B, Pinter P, Sayre K, Bowden JW, Howden SM (2004) Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2. Field Crop Res 85:85–102

    Article  Google Scholar 

  • Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Boote KJ, Thorburn PJ, Rotter RP, Cammarano D, Brisson N, Basso B, Martre P, Aggarwal PK, Angulo C, Bertuzzi P, Biernath C, Challinor AJ, Doltra J, Gayler S, Goldberg R, Grant R, Heng L, Hooker J, Hunt LA, Ingwersen J, Izaurralde RC, Kersebaum KC, Mueller C, Kumar SN, Nendel C, O’Leary G, Olesen JE, Osborne TM, Palosuo T, Priesack E, Ripoche D, Semenov MA, Shcherbak I, Steduto P, Stoeckle C, Stratonovitch P, Streck T, Supit I, Tao F, Travasso M, Waha K, Wallach D, White JW, Williams JR, Wolf J (2013) Uncertainty in simulating wheat yields under climate change. Nat Clim Chang 3:827–832

    Article  Google Scholar 

  • Asseng S, Ewert F, Martre P, Rotter RP, Lobell DB, Cammarano D, Kimball BA, Ottman MJ, Wall GW, White JW, Reynolds MP, Alderman PD, Prasad PVV, Aggarwal PK, Anothai J, Basso B, Biernath C, Challinor AJ, De Sanctis G, Doltra J, Fereres E, Garcia-Vile M, Gayler S, Hoogenboom G, Hunt LA, Izaurralde RC, Jabloun M, Jones CD, Kersebaum KC, Koehler AK, Muller C, Kumar SN, Nendel C, O’Leary G, Olesen JE, Palosuo T, Priesack E, Rezaei EE, Ruane AC, Semenov MA, Shcherbak I, Stockle C, Stratonovitch P, Streck T, Supit I, Tao F, Thorburn PJ, Waha K, Wang E, Wallach D, Wolf I, Zhao Z, Zhu Y (2015) Rising temperatures reduce global wheat production. Nat Clim Chang 5:143–147

    Article  Google Scholar 

  • Avnery S, Mauzerall DL, Liu JF, Horowitz LW (2011) Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O-3 pollution. Atmos Environ 45:2297–2309

    Article  Google Scholar 

  • Barrett BS, Raga GB (2016) Variability of winter and summer surface ozone in Mexico City on the intraseasonal timescale. Atmos Chem Phys 16:15359–15370

    Article  Google Scholar 

  • Biswas DK, Jiang GM (2011) Differential drought-induced modulation of ozone tolerance in winter wheat species. J Exp Bot 62:4153–4162

    Article  Google Scholar 

  • Biswas DK, Xu H, Li YG, Ma BL, Jiang GM (2013) Modification of photosynthesis and growth responses to elevated CO2 by ozone in two cultivars of winter wheat with different years of release. J Exp Bot 64:1485–1496

    Article  Google Scholar 

  • Calabrese EJ (2014) Hormesis: a fundamental concept in biology. Microb Cell 1:145–149

    Article  Google Scholar 

  • Conde C, Estrada F, Martinez B, Sanchez O, Gay C (2011) Regional climate change scenarios for Mexico. Atmosfera 24:125–140

    Google Scholar 

  • Cooper OR, Parrish DD, Ziemke J, Balashov NV, Cupeiro M, Galbally IE, Gilge S, Horowitz L, Jensen NR, Lamarque J-F, Naik V, Oltmans SJ, Schwab J, Shindell DT, Thompson AM, Thouret V, Wang Y, Zbinden RM (2014) Global distribution and trends of tropospheric ozone: an observation-based review. Elementa Science of the Anthropocene 2

  • Escobar R (2014) El cultivo de secano. Universidad Autónoma Chapingo, Texcoco, México, pp 61–113

    Google Scholar 

  • FAOSTAT (2017) Food and Agricultural Organization of the United Nations, FAOSTAT Statistics Database. FAO

  • Feng ZZ, Kobayashi K (2009) Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis. Atmos Environ 43:1510–1519

    Article  Google Scholar 

  • Feng ZZ, Pang J, Nouchi I, Kobayashi K, Yamakawa T, Zhu JG (2010) Apoplastic ascorbate contributes to the differential ozone sensitivity in two varieties of winter wheat under fully open-air field conditions. Environ Pollut 158:3539–3545

    Article  Google Scholar 

  • Ferris R, Ellis RH, Wheeler TR, Hadley P (1998) Effect of high temperature stress at anthesis on grain yield and biomass of field-grown crops of wheat. Ann Bot 82:631–639

    Article  Google Scholar 

  • Fischer RA (1979) Growth and water limitation to dryland wheat yield in Australia: a physiological framework. J Aust Inst Agric Sci 45:83–94

    Google Scholar 

  • Fowler D, Amann M, Anderson R, Ashmore M, Cox P, Depledge M, Derwent D, Grennfelt P, Hewitt N, Hov O, Jenkin M, Kelly F, Liss P, Pilling M, Pyle J, Slingo J, Stevenson D (2008) Ground-level ozone in the 21st century: future trends, impacts and policy implications. Royal Society Policy Document 15/08, RS1276 edn, London, p 132

  • Guarin JR, Asseng S, Martre P, Bliznyuk N (2018) Testing a crop model with extreme low yields from historical district records. Field Crop Res

  • Guarin JR, Kassie B, Mashaheet AM, Burkey K, Asseng S (2019) Modeling the effects of tropospheric ozone on wheat growth and yield. Eur J Agron 105:13–23

    Article  Google Scholar 

  • Guttman NB (1989) Statistical descriptors of climate. Bull Am Meteorol Soc 70:602–607

    Article  Google Scholar 

  • Hauglustaine DA, Lathiere J, Szopa S, Folberth GA (2005) Future tropospheric ozone simulated with a climate-chemistry-biosphere model. Geophys Res Lett 32:5

    Article  Google Scholar 

  • Heagle AS (1989) Ozone and crop yield. Annu Rev Phytopathol 27:397–423

    Article  Google Scholar 

  • Heck WW, Cure WW, Rawlings JO, Zaragoza LJ, Heagle AS, Heggestad HE, Kohut RJ, Kress LW, Temple PJ (1984) Assessing impacts of ozone on agricultural crops: 2. Crop yield functions and alternative exposure statistics. J Air Pollut Control Assoc 34:810–817

    Article  Google Scholar 

  • Hernandez Paniagua IY, Clemitshaw KC, Mendoza A (2017) Observed trends in ground-level O-3 in Monterrey, Mexico, during 1993-2014: comparison with Mexico City and Guadalajara. Atmos Chem Phys 17:9163–9185

    Article  Google Scholar 

  • Hernandez-Ochoa IM, Asseng S, Kassie BT, Xiong W, Robertson R, Pequeno DNL, Sonder K, Reynolds M, Babar MD, Molero Milan A, Hoogenboom G (2018) Climate change impact on Mexico wheat production. Agric For Meteorol 263:373–387

    Article  Google Scholar 

  • Hou P, Wu SL (2016) Long-term changes in extreme air pollution meteorology and the implications for air quality. Sci Rep 6:9

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Cambridge, United Kingdom and New York, NY, USA, p 1535

  • Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA, Wilkens PW, Singh U, Gijsman AJ, Ritchie JT (2003) The DSSAT cropping system model. Eur J Agron 18:235–265

    Article  Google Scholar 

  • Karmalkar AV, Bradley RS, Diaz HF (2011) Climate change in Central America and Mexico: regional climate model validation and climate change projections. Clim Dyn 37:605–629

    Article  Google Scholar 

  • Kassie BT, Asseng S, Porter CH, Royce FS (2016) Performance of DSSAT-NWheat across a wide range of current and future growing conditions. Eur J Agron 81:27–36

    Article  Google Scholar 

  • Keating BA, Meinke H, Probert ME, Huth NI, Hills IG (2001) NWheat: documentation and performance of a wheat module for APSIM. Tropical Agriculture Technical Memorandum:1–66

  • Khan S, Soja G (2003) Yield responses of wheat to ozone exposure as modified by drought-induced differences in ozone uptake. Water Air Soil Pollut 147:299–315

    Article  Google Scholar 

  • Koo J, Dimes J (2010) HC27: generic/prototypical soil profiles. International food policy research institute, Washington, DC., and University of Minnesota, St. Paul, MN. Available online at http://harvestchoice.org/node/2239

  • Leisner CP, Ainsworth EA (2012) Quantifying the effects of ozone on plant reproductive growth and development. Glob Chang Biol 18:606–616

    Article  Google Scholar 

  • Lesser VM, Rawlings JO, Spruill SE, Somerville MC (1990) Ozone effects on agricultural crops: statistical methodologies and estimated dose-response relationships. Crop Sci 30:148–155

    Article  Google Scholar 

  • Liu B, Asseng S, Liu LL, Tang L, Cao WX, Zhu Y (2016) Testing the responses of four wheat crop models to heat stress at anthesis and grain filling. Glob Chang Biol 22:1890–1903

    Article  Google Scholar 

  • Lobell DB, Asseng S (2017) Comparing estimates of climate change impacts from process-based and statistical crop models. Environ Res Lett 12:12

    Google Scholar 

  • Lobell DB, Ortiz-Monasterio JI, Asner GP, Matson PA, Naylor RL, Falcon WP (2005) Analysis of wheat yield and climatic trends in Mexico. Field Crop Res 94:250–256

    Article  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620

    Article  Google Scholar 

  • Martre P, Wallach D, Asseng S, Ewert F, Jones JW, Rotter RP, Boote KJ, Ruane AC, Thorburn PJ, Cammarano D, Hatfield JL, Rosenzweig C, Aggarwal PK, Angulo C, Basso B, Bertuzzi P, Biernath C, Brisson N, Challinor AJ, Doltra J, Gayler S, Goldberg R, Grant RF, Heng L, Hooker J, Hunt LA, Ingwersen J, Izaurralde RC, Kersebaum KC, Mueller C, Kumar SN, Nendel C, O’Leary G, Olesen JE, Osborne TM, Palosuo T, Priesack E, Ripoche D, Semenov MA, Shcherbak I, Steduto P, Stoeckle CO, Stratonovitch P, Streck T, Supit I, Tao F, Travasso M, Waha K, White JW, Wolf J (2015) Multimodel ensembles of wheat growth: many models are better than one. Glob Chang Biol 21:911–925

    Article  Google Scholar 

  • Mauzerall DL, Wang XP (2001) Protecting agricultural crops from the effects of tropospheric ozone exposure: reconciling science and standard setting in the United States, Europe, and Asia. Annu Rev Energy Environ 26:237–268

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report to the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Mills G, Buse A, Gimeno B, Bermejo V, Holland M, Emberson L, Pleijel H (2007) A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmos Environ 41:2630–2643

    Article  Google Scholar 

  • Mills G, Pleijel H, Malley CS, Sinha B, Cooper OR, Schultz MG, Neufeld HS, Simpson D, Sharps K, Feng ZZ, Gerosa G, Harmens H, Kobayashi K, Saxena P, Paoletti E, Sinha V, Xu XB (2018a) Tropospheric ozone assessment report: present-day tropospheric ozone distribution and trends relevant to vegetation. Elem Sci Anth 6:46

    Article  Google Scholar 

  • Mills G, Sharps K, Simpson D, Pleijel H, Broberg M, Uddling J, Jaramillo F, Davies WJ, Dentener F, Van den Berg M, Agrawal M, Agrawal SB, Ainsworth EA, Buker P, Emberson L, Feng ZZ, Harmens H, Hayes F, Kobayashi K, Paoletti E, Van Dingenen R (2018b) Ozone pollution will compromise efforts to increase global wheat production. Glob Chang Biol 24:3560–3574

    Article  Google Scholar 

  • Molina MJ, Molina LT (2004) Megacities and atmospheric pollution. J Air Waste Manage Assoc 54:644–680

    Article  Google Scholar 

  • Molina LT, Kolb CE, de Foy B, Lamb BK, Brune WH, Jimenez JL, Ramos-Villegas R, Sarmiento J, Paramo-Figueroa VH, Cardenas B, Gutierrez-Avedoy V, Molina MJ (2007) Air quality in North America’s most populous city - overview of the MCMA-2003 campaign. Atmos Chem Phys 7:2447–2473

    Article  Google Scholar 

  • Mueller C, Robertson RD (2014) Projecting future crop productivity for global economic modeling. Agric Econ 45:37–50

    Article  Google Scholar 

  • Ollerenshaw JH, Lyons T (1999) Impacts of ozone on the growth and yield of field-grown winter wheat. Environ Pollut 106:67–72

    Article  Google Scholar 

  • Pleijel H, Broberg MC, Uddling J, Mills G (2018) Current surface ozone concentrations significantly decrease wheat growth, yield and quality. Sci Total Environ 613:687–692

    Article  Google Scholar 

  • Porter JR, Gawith M (1999) Temperatures and the growth and development of wheat: a review. Eur J Agron 10:23–36

    Article  Google Scholar 

  • Robertson RD (2017) Mink: details of a global gridded crop modeling system. International Food Policy Research Institute (IFPRI), Washington D.C

    Google Scholar 

  • Roche D (2015) Stomatal conductance is essential for higher yield potential of C-3 crops. Crit Rev Plant Sci 34:429–453

    Article  Google Scholar 

  • Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Boote KJ, Thorburne P, Antle JM, Nelson GC, Porter C, Janssen S, Asseng S, Basso B, Ewert F, Wallach D, Baigorria G, Winter JM (2013) The agricultural model Intercomparison and improvement project (AgMIP): protocols and pilot studies. Agric For Meteorol 170:166–182

    Article  Google Scholar 

  • SAGARPA (2016a) Anuario estadístico de la producción agrícola. Available at: http://infosiap.siap.gob.mx/aagricola_siap_gb/icultivo/index.jsp

  • SAGARPA (2016b) Crece 19 por ciento rendimiento en produccion de trigo en Mexico. Comunicado de prense. Secretaria de Agricultura, Ganaderia, Desarrollo rural, Pesca y Alimentacion, Ciudad de Mexico, Mexico, p 2

  • Sayre KD, Rajaram S, Fischer RA (1997) Yield potential progress in short bread wheats in Northwest Mexico. Crop Sci 37:36–42

    Article  Google Scholar 

  • Schultz MG, Schroder S, Lyapina O, Cooper OR, Galbally I, Petropavlovskikh I, von Schneidemesser E, Tanimoto H, Elshorbany Y, Naja M, Seguel RJ, Dauert U, Eckhardt P, Feigenspan S, Fiebig M, Hjellbrekke AG, Hong YD, Kjeld PC, Koide H, Lear G, Tarasick D, Ueno M, Wallasch M, Baumgardner D, Chuang MT, Gillett R, Lee M, Molloy S, Moolla R, Wang T, Sharps K, Adame JA, Ancellet G, Apadula F, Artaxo P, Barlasina ME, Bogucka M, Bonasoni P, Chang L, Colomb A, Cuevas-Agullo E, Cupeiro M, Degorska A, Ding AJ, FrHlich M, Frolova M, Gadhavi H, Gheusi F, Gilge S, Gonzalez MY, Gros V, Hamad SH, Helmig D, Henriques D, Hermansen O, Holla R, Hueber J, Im U, Jaffe DA, Komala N, Kubistin D, Lam KS, Laurila T, Lee H, Levy I, Mazzoleni C, Mazzoleni LR, McClure-Begley A, Mohamad M, Murovec M, Navarro-Comas M, Nicodim F, Parrish D, Read KA, Reid N, Ries NRL, Saxena P, Schwab JJ, Scorgie Y, Senik I, Simmonds P, Sinha V, Skorokhod AI, Spain G, Spangl W, Spoor R, Springston SR, Steer K, Steinbacher M, Suharguniyawan E, Torre P, Trickl T, Lin WL, Weller R, Xu XB, Xue LK, Ma ZQ (2017) Tropospheric ozone assessment report: database and metrics data of global surface ozone observations. Elem Sci Anth 5:26

    Article  Google Scholar 

  • Semenov MA, Shewry PR (2011) Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Sci Rep 1:5

    Article  Google Scholar 

  • Shiferaw B, Smale M, Braun HJ, Duveiller E, Reynolds M, Muricho G (2013) Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security 5:291–317

    Article  Google Scholar 

  • Sicard P, Anav A, De Marco A, Paoletti E (2017) Projected global ground-level ozone impacts on vegetation under different emission and climate scenarios. Atmos Chem Phys 17:12177–12196

    Article  Google Scholar 

  • Simpson D, Benedictow A, Berge H, Bergstrom R, Emberson LD, Fagerli H, Flechard CR, Hayman GD, Gauss M, Jonson JE, Jenkin ME, Nyiri A, Richter C, Semeena VS, Tsyro S, Tuovinen JP, Valdebenito A, Wind P (2012) The EMEP MSC-W chemical transport model - technical description. Atmos Chem Phys 12:7825–7865

    Article  Google Scholar 

  • Simpson D, Arneth A, Mills G, Solberg S, Uddling J (2014) Ozone - the persistent menace: interactions with the N cycle and climate change. Curr Opin Environ Sustain 9-10:9–19

    Article  Google Scholar 

  • Simpson D, Bergstrom R, Imhof H, Wind P (2017) Updates to the EMEP MSC-W model, 2016-2017. Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components. Status report 1/2017. The Norwegian Meteorological Institute, Oslo, Norway, pp 115-122

  • Stadtler S, Simpson D, Schroder S, Taraborrelli D, Bott A, Schultz M (2018) Ozone impacts of gas-aerosol uptake in global chemistry transport models. Atmos Chem Phys 18:3147–3171

    Article  Google Scholar 

  • Tian H, Ren W, Tao B, Sun G, Chappelka A, Wang X, Pan S, Yang J, Liu J, Felzer B, Melillo J, Reilly J (2016) Climate extremes and ozone pollution: a growing threat to China’s food security. Ecosyst Health Sustain 2(1):e01203

    Article  Google Scholar 

  • Trnka M, Rotter RP, Ruiz-Ramos M, Kersebaum KC, Olesen JE, Zalud Z, Semenov MA (2014) Adverse weather conditions for European wheat production will become more frequent with climate change. Nat Clim Chang 4:637–643

    Article  Google Scholar 

  • Van Dingenen R, Dentener FJ, Raes F, Krol MC, Emberson L, Cofala J (2009) The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos Environ 43:604–618

    Article  Google Scholar 

  • Wang XP, Mauzerall DL (2004) Characterizing distributions of surface ozone and its impact on grain production in China, Japan and South Korea: 1990 and 2020. Atmos Environ 38:4383–4402

    Article  Google Scholar 

  • Wild O, Fiore AM, Shindell DT, Doherty RM, Collins WJ, Dentener FJ, Schultz MG, Gong S, MacKenzie IA, Zeng G, Hess P, Duncan BN, Bergmann DJ, Szopa S, Jonson JE, Keating TJ, Zuber A (2012) Modelling future changes in surface ozone: a parameterized approach. Atmos Chem Phys 12:2037–2054

    Article  Google Scholar 

  • WMO (2017) WMO guidelines on the calculation of climate normals (WMO-No. 1203). World Meteorological Organization, Geneva, pp 1–18

    Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zhang YZ, Wang YH (2016) Climate-driven ground-level ozone extreme in the fall over the Southeast United States. Proc Natl Acad Sci U S A 113:10025–10030

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Courtnay Cardozo for her assistance with geospatial graphics and Liujun Xiao for the assistance he provided with data management. J.R.G. would like to thank the Florida Education Fund and the McKnight Doctoral Fellowship program for the support provided. The EMEP modeling relies on computer CPU support by the Research Council of Norway (Programme for Supercomputing) and is a contribution to the Swedish Climate Modelling Research Project MERGE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Rafael Guarin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• O3 impact will reduce wheat production in Mexico by 7–18% by the 2050s.

• Simulations showed large variability in O3 impact across Mexico.

• The negative O3 impact on wheat production in Mexico is comparable with, or even larger than, the future climate change impact.

Electronic supplementary material

ESM 1

(PDF 104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guarin, J.R., Emberson, L., Simpson, D. et al. Impacts of tropospheric ozone and climate change on Mexico wheat production. Climatic Change 155, 157–174 (2019). https://doi.org/10.1007/s10584-019-02451-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-019-02451-4

Keywords

Navigation