Advertisement

Impacts of tropospheric ozone and climate change on Mexico wheat production

  • Jose Rafael GuarinEmail author
  • Lisa Emberson
  • David Simpson
  • Ixchel M. Hernandez-Ochoa
  • Diane Rowland
  • Senthold Asseng
Article

Abstract

Wheat is an important staple crop sensitive to negative effects from elevated tropospheric ozone (O3) concentrations, but the impacts of future O3 concentrations on wheat production in Mexico are unknown. To determine these impacts, the O3-modified DSSAT-NWheat crop model was used to simulate wheat production in Mexico using a baseline scenario with pre-industrial O3 concentrations from 1980 to 2010 and five Global Climate Models (GCMs) under the Representative Concentration Pathway (RCP) 8.5 scenario from 2041 to 2070 paired with future O3 concentrations from the European Monitoring and Evaluation Programme (EMEP) Meteorological Synthesizing Centre–West (MSC-W) model. Thirty-two representative major wheat-producing locations in Mexico were simulated assuming both irrigated and rainfed conditions for two O3 sensitivity cultivar classifications. The simulations showed large variability (after averaging over 30 years) in yield loss, ranging from 7 to 26% because of O3 impact, depending on the location, irrigation, and climate change emissions scenario. After upscaling and aggregating the simulations to the country scale based on observed irrigated and rainfed production, national wheat production for Mexico is expected to decline by 12% under the future RCP 8.5 climate change scenario with additional losses of 7 to 18% because of O3 impact, depending on the cultivar O3 sensitivity. This yield loss caused by O3 is comparable with, or even larger than, the impact from projected future climatic change in temperature, rainfall, and atmospheric CO2 concentration. Therefore, O3 impacts should be considered in future agricultural impact assessments.

Keywords

Crop model Wheat yield Emissions scenario Future impact Food security 

Notes

Acknowledgements

We would like to thank Courtnay Cardozo for her assistance with geospatial graphics and Liujun Xiao for the assistance he provided with data management. J.R.G. would like to thank the Florida Education Fund and the McKnight Doctoral Fellowship program for the support provided. The EMEP modeling relies on computer CPU support by the Research Council of Norway (Programme for Supercomputing) and is a contribution to the Swedish Climate Modelling Research Project MERGE.

Supplementary material

10584_2019_2451_MOESM1_ESM.pdf (105 kb)
ESM 1 (PDF 104 kb)

References

  1. Ainsworth EA (2017) Understanding and improving global crop response to ozone pollution. Plant J 90:886–897CrossRefGoogle Scholar
  2. Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD (2012) The effects of tropospheric ozone on net primary productivity and implications for climate change. In: Merchant SS (ed) Annual review of plant biology, Vol 63. Annual Reviews, Palo Alto, pp 637–661Google Scholar
  3. Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28:949–964CrossRefGoogle Scholar
  4. Asseng S, van Herwaarden AF (2003) Analysis of the benefits to wheat yield from assimilates stored prior to grain filling in a range of environments. Plant Soil 256:217–229CrossRefGoogle Scholar
  5. Asseng S, Keating BA, Fillery IRP, Gregory PJ, Bowden JW, Turner NC, Palta JA, Abrecht DG (1998) Performance of the APSIM-wheat model in Western Australia. Field Crop Res 57:163–179CrossRefGoogle Scholar
  6. Asseng S, van Keulen H, Stol W (2000) Performance and application of the APSIM Nwheat model in the Netherlands. Eur J Agron 12:37–54CrossRefGoogle Scholar
  7. Asseng S, Jamieson PD, Kimball B, Pinter P, Sayre K, Bowden JW, Howden SM (2004) Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2. Field Crop Res 85:85–102CrossRefGoogle Scholar
  8. Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Boote KJ, Thorburn PJ, Rotter RP, Cammarano D, Brisson N, Basso B, Martre P, Aggarwal PK, Angulo C, Bertuzzi P, Biernath C, Challinor AJ, Doltra J, Gayler S, Goldberg R, Grant R, Heng L, Hooker J, Hunt LA, Ingwersen J, Izaurralde RC, Kersebaum KC, Mueller C, Kumar SN, Nendel C, O’Leary G, Olesen JE, Osborne TM, Palosuo T, Priesack E, Ripoche D, Semenov MA, Shcherbak I, Steduto P, Stoeckle C, Stratonovitch P, Streck T, Supit I, Tao F, Travasso M, Waha K, Wallach D, White JW, Williams JR, Wolf J (2013) Uncertainty in simulating wheat yields under climate change. Nat Clim Chang 3:827–832CrossRefGoogle Scholar
  9. Asseng S, Ewert F, Martre P, Rotter RP, Lobell DB, Cammarano D, Kimball BA, Ottman MJ, Wall GW, White JW, Reynolds MP, Alderman PD, Prasad PVV, Aggarwal PK, Anothai J, Basso B, Biernath C, Challinor AJ, De Sanctis G, Doltra J, Fereres E, Garcia-Vile M, Gayler S, Hoogenboom G, Hunt LA, Izaurralde RC, Jabloun M, Jones CD, Kersebaum KC, Koehler AK, Muller C, Kumar SN, Nendel C, O’Leary G, Olesen JE, Palosuo T, Priesack E, Rezaei EE, Ruane AC, Semenov MA, Shcherbak I, Stockle C, Stratonovitch P, Streck T, Supit I, Tao F, Thorburn PJ, Waha K, Wang E, Wallach D, Wolf I, Zhao Z, Zhu Y (2015) Rising temperatures reduce global wheat production. Nat Clim Chang 5:143–147CrossRefGoogle Scholar
  10. Avnery S, Mauzerall DL, Liu JF, Horowitz LW (2011) Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O-3 pollution. Atmos Environ 45:2297–2309CrossRefGoogle Scholar
  11. Barrett BS, Raga GB (2016) Variability of winter and summer surface ozone in Mexico City on the intraseasonal timescale. Atmos Chem Phys 16:15359–15370CrossRefGoogle Scholar
  12. Biswas DK, Jiang GM (2011) Differential drought-induced modulation of ozone tolerance in winter wheat species. J Exp Bot 62:4153–4162CrossRefGoogle Scholar
  13. Biswas DK, Xu H, Li YG, Ma BL, Jiang GM (2013) Modification of photosynthesis and growth responses to elevated CO2 by ozone in two cultivars of winter wheat with different years of release. J Exp Bot 64:1485–1496CrossRefGoogle Scholar
  14. Calabrese EJ (2014) Hormesis: a fundamental concept in biology. Microb Cell 1:145–149CrossRefGoogle Scholar
  15. Conde C, Estrada F, Martinez B, Sanchez O, Gay C (2011) Regional climate change scenarios for Mexico. Atmosfera 24:125–140Google Scholar
  16. Cooper OR, Parrish DD, Ziemke J, Balashov NV, Cupeiro M, Galbally IE, Gilge S, Horowitz L, Jensen NR, Lamarque J-F, Naik V, Oltmans SJ, Schwab J, Shindell DT, Thompson AM, Thouret V, Wang Y, Zbinden RM (2014) Global distribution and trends of tropospheric ozone: an observation-based review. Elementa Science of the Anthropocene 2Google Scholar
  17. Escobar R (2014) El cultivo de secano. Universidad Autónoma Chapingo, Texcoco, México, pp 61–113Google Scholar
  18. FAOSTAT (2017) Food and Agricultural Organization of the United Nations, FAOSTAT Statistics Database. FAOGoogle Scholar
  19. Feng ZZ, Kobayashi K (2009) Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis. Atmos Environ 43:1510–1519CrossRefGoogle Scholar
  20. Feng ZZ, Pang J, Nouchi I, Kobayashi K, Yamakawa T, Zhu JG (2010) Apoplastic ascorbate contributes to the differential ozone sensitivity in two varieties of winter wheat under fully open-air field conditions. Environ Pollut 158:3539–3545CrossRefGoogle Scholar
  21. Ferris R, Ellis RH, Wheeler TR, Hadley P (1998) Effect of high temperature stress at anthesis on grain yield and biomass of field-grown crops of wheat. Ann Bot 82:631–639CrossRefGoogle Scholar
  22. Fischer RA (1979) Growth and water limitation to dryland wheat yield in Australia: a physiological framework. J Aust Inst Agric Sci 45:83–94Google Scholar
  23. Fowler D, Amann M, Anderson R, Ashmore M, Cox P, Depledge M, Derwent D, Grennfelt P, Hewitt N, Hov O, Jenkin M, Kelly F, Liss P, Pilling M, Pyle J, Slingo J, Stevenson D (2008) Ground-level ozone in the 21st century: future trends, impacts and policy implications. Royal Society Policy Document 15/08, RS1276 edn, London, p 132Google Scholar
  24. Guarin JR, Asseng S, Martre P, Bliznyuk N (2018) Testing a crop model with extreme low yields from historical district records. Field Crop ResGoogle Scholar
  25. Guarin JR, Kassie B, Mashaheet AM, Burkey K, Asseng S (2019) Modeling the effects of tropospheric ozone on wheat growth and yield. Eur J Agron 105:13–23CrossRefGoogle Scholar
  26. Guttman NB (1989) Statistical descriptors of climate. Bull Am Meteorol Soc 70:602–607CrossRefGoogle Scholar
  27. Hauglustaine DA, Lathiere J, Szopa S, Folberth GA (2005) Future tropospheric ozone simulated with a climate-chemistry-biosphere model. Geophys Res Lett 32:5CrossRefGoogle Scholar
  28. Heagle AS (1989) Ozone and crop yield. Annu Rev Phytopathol 27:397–423CrossRefGoogle Scholar
  29. Heck WW, Cure WW, Rawlings JO, Zaragoza LJ, Heagle AS, Heggestad HE, Kohut RJ, Kress LW, Temple PJ (1984) Assessing impacts of ozone on agricultural crops: 2. Crop yield functions and alternative exposure statistics. J Air Pollut Control Assoc 34:810–817CrossRefGoogle Scholar
  30. Hernandez Paniagua IY, Clemitshaw KC, Mendoza A (2017) Observed trends in ground-level O-3 in Monterrey, Mexico, during 1993-2014: comparison with Mexico City and Guadalajara. Atmos Chem Phys 17:9163–9185CrossRefGoogle Scholar
  31. Hernandez-Ochoa IM, Asseng S, Kassie BT, Xiong W, Robertson R, Pequeno DNL, Sonder K, Reynolds M, Babar MD, Molero Milan A, Hoogenboom G (2018) Climate change impact on Mexico wheat production. Agric For Meteorol 263:373–387CrossRefGoogle Scholar
  32. Hou P, Wu SL (2016) Long-term changes in extreme air pollution meteorology and the implications for air quality. Sci Rep 6:9CrossRefGoogle Scholar
  33. IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Cambridge, United Kingdom and New York, NY, USA, p 1535Google Scholar
  34. Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA, Wilkens PW, Singh U, Gijsman AJ, Ritchie JT (2003) The DSSAT cropping system model. Eur J Agron 18:235–265CrossRefGoogle Scholar
  35. Karmalkar AV, Bradley RS, Diaz HF (2011) Climate change in Central America and Mexico: regional climate model validation and climate change projections. Clim Dyn 37:605–629CrossRefGoogle Scholar
  36. Kassie BT, Asseng S, Porter CH, Royce FS (2016) Performance of DSSAT-NWheat across a wide range of current and future growing conditions. Eur J Agron 81:27–36CrossRefGoogle Scholar
  37. Keating BA, Meinke H, Probert ME, Huth NI, Hills IG (2001) NWheat: documentation and performance of a wheat module for APSIM. Tropical Agriculture Technical Memorandum:1–66Google Scholar
  38. Khan S, Soja G (2003) Yield responses of wheat to ozone exposure as modified by drought-induced differences in ozone uptake. Water Air Soil Pollut 147:299–315CrossRefGoogle Scholar
  39. Koo J, Dimes J (2010) HC27: generic/prototypical soil profiles. International food policy research institute, Washington, DC., and University of Minnesota, St. Paul, MN. Available online at http://harvestchoice.org/node/2239
  40. Leisner CP, Ainsworth EA (2012) Quantifying the effects of ozone on plant reproductive growth and development. Glob Chang Biol 18:606–616CrossRefGoogle Scholar
  41. Lesser VM, Rawlings JO, Spruill SE, Somerville MC (1990) Ozone effects on agricultural crops: statistical methodologies and estimated dose-response relationships. Crop Sci 30:148–155CrossRefGoogle Scholar
  42. Liu B, Asseng S, Liu LL, Tang L, Cao WX, Zhu Y (2016) Testing the responses of four wheat crop models to heat stress at anthesis and grain filling. Glob Chang Biol 22:1890–1903CrossRefGoogle Scholar
  43. Lobell DB, Asseng S (2017) Comparing estimates of climate change impacts from process-based and statistical crop models. Environ Res Lett 12:12Google Scholar
  44. Lobell DB, Ortiz-Monasterio JI, Asner GP, Matson PA, Naylor RL, Falcon WP (2005) Analysis of wheat yield and climatic trends in Mexico. Field Crop Res 94:250–256CrossRefGoogle Scholar
  45. Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620CrossRefGoogle Scholar
  46. Martre P, Wallach D, Asseng S, Ewert F, Jones JW, Rotter RP, Boote KJ, Ruane AC, Thorburn PJ, Cammarano D, Hatfield JL, Rosenzweig C, Aggarwal PK, Angulo C, Basso B, Bertuzzi P, Biernath C, Brisson N, Challinor AJ, Doltra J, Gayler S, Goldberg R, Grant RF, Heng L, Hooker J, Hunt LA, Ingwersen J, Izaurralde RC, Kersebaum KC, Mueller C, Kumar SN, Nendel C, O’Leary G, Olesen JE, Osborne TM, Palosuo T, Priesack E, Ripoche D, Semenov MA, Shcherbak I, Steduto P, Stoeckle CO, Stratonovitch P, Streck T, Supit I, Tao F, Travasso M, Waha K, White JW, Wolf J (2015) Multimodel ensembles of wheat growth: many models are better than one. Glob Chang Biol 21:911–925CrossRefGoogle Scholar
  47. Mauzerall DL, Wang XP (2001) Protecting agricultural crops from the effects of tropospheric ozone exposure: reconciling science and standard setting in the United States, Europe, and Asia. Annu Rev Energy Environ 26:237–268CrossRefGoogle Scholar
  48. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report to the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  49. Mills G, Buse A, Gimeno B, Bermejo V, Holland M, Emberson L, Pleijel H (2007) A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmos Environ 41:2630–2643CrossRefGoogle Scholar
  50. Mills G, Pleijel H, Malley CS, Sinha B, Cooper OR, Schultz MG, Neufeld HS, Simpson D, Sharps K, Feng ZZ, Gerosa G, Harmens H, Kobayashi K, Saxena P, Paoletti E, Sinha V, Xu XB (2018a) Tropospheric ozone assessment report: present-day tropospheric ozone distribution and trends relevant to vegetation. Elem Sci Anth 6:46CrossRefGoogle Scholar
  51. Mills G, Sharps K, Simpson D, Pleijel H, Broberg M, Uddling J, Jaramillo F, Davies WJ, Dentener F, Van den Berg M, Agrawal M, Agrawal SB, Ainsworth EA, Buker P, Emberson L, Feng ZZ, Harmens H, Hayes F, Kobayashi K, Paoletti E, Van Dingenen R (2018b) Ozone pollution will compromise efforts to increase global wheat production. Glob Chang Biol 24:3560–3574CrossRefGoogle Scholar
  52. Molina MJ, Molina LT (2004) Megacities and atmospheric pollution. J Air Waste Manage Assoc 54:644–680CrossRefGoogle Scholar
  53. Molina LT, Kolb CE, de Foy B, Lamb BK, Brune WH, Jimenez JL, Ramos-Villegas R, Sarmiento J, Paramo-Figueroa VH, Cardenas B, Gutierrez-Avedoy V, Molina MJ (2007) Air quality in North America’s most populous city - overview of the MCMA-2003 campaign. Atmos Chem Phys 7:2447–2473CrossRefGoogle Scholar
  54. Mueller C, Robertson RD (2014) Projecting future crop productivity for global economic modeling. Agric Econ 45:37–50CrossRefGoogle Scholar
  55. Ollerenshaw JH, Lyons T (1999) Impacts of ozone on the growth and yield of field-grown winter wheat. Environ Pollut 106:67–72CrossRefGoogle Scholar
  56. Pleijel H, Broberg MC, Uddling J, Mills G (2018) Current surface ozone concentrations significantly decrease wheat growth, yield and quality. Sci Total Environ 613:687–692CrossRefGoogle Scholar
  57. Porter JR, Gawith M (1999) Temperatures and the growth and development of wheat: a review. Eur J Agron 10:23–36CrossRefGoogle Scholar
  58. Robertson RD (2017) Mink: details of a global gridded crop modeling system. International Food Policy Research Institute (IFPRI), Washington D.CGoogle Scholar
  59. Roche D (2015) Stomatal conductance is essential for higher yield potential of C-3 crops. Crit Rev Plant Sci 34:429–453CrossRefGoogle Scholar
  60. Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Boote KJ, Thorburne P, Antle JM, Nelson GC, Porter C, Janssen S, Asseng S, Basso B, Ewert F, Wallach D, Baigorria G, Winter JM (2013) The agricultural model Intercomparison and improvement project (AgMIP): protocols and pilot studies. Agric For Meteorol 170:166–182CrossRefGoogle Scholar
  61. SAGARPA (2016a) Anuario estadístico de la producción agrícola. Available at: http://infosiap.siap.gob.mx/aagricola_siap_gb/icultivo/index.jsp
  62. SAGARPA (2016b) Crece 19 por ciento rendimiento en produccion de trigo en Mexico. Comunicado de prense. Secretaria de Agricultura, Ganaderia, Desarrollo rural, Pesca y Alimentacion, Ciudad de Mexico, Mexico, p 2Google Scholar
  63. Sayre KD, Rajaram S, Fischer RA (1997) Yield potential progress in short bread wheats in Northwest Mexico. Crop Sci 37:36–42CrossRefGoogle Scholar
  64. Schultz MG, Schroder S, Lyapina O, Cooper OR, Galbally I, Petropavlovskikh I, von Schneidemesser E, Tanimoto H, Elshorbany Y, Naja M, Seguel RJ, Dauert U, Eckhardt P, Feigenspan S, Fiebig M, Hjellbrekke AG, Hong YD, Kjeld PC, Koide H, Lear G, Tarasick D, Ueno M, Wallasch M, Baumgardner D, Chuang MT, Gillett R, Lee M, Molloy S, Moolla R, Wang T, Sharps K, Adame JA, Ancellet G, Apadula F, Artaxo P, Barlasina ME, Bogucka M, Bonasoni P, Chang L, Colomb A, Cuevas-Agullo E, Cupeiro M, Degorska A, Ding AJ, FrHlich M, Frolova M, Gadhavi H, Gheusi F, Gilge S, Gonzalez MY, Gros V, Hamad SH, Helmig D, Henriques D, Hermansen O, Holla R, Hueber J, Im U, Jaffe DA, Komala N, Kubistin D, Lam KS, Laurila T, Lee H, Levy I, Mazzoleni C, Mazzoleni LR, McClure-Begley A, Mohamad M, Murovec M, Navarro-Comas M, Nicodim F, Parrish D, Read KA, Reid N, Ries NRL, Saxena P, Schwab JJ, Scorgie Y, Senik I, Simmonds P, Sinha V, Skorokhod AI, Spain G, Spangl W, Spoor R, Springston SR, Steer K, Steinbacher M, Suharguniyawan E, Torre P, Trickl T, Lin WL, Weller R, Xu XB, Xue LK, Ma ZQ (2017) Tropospheric ozone assessment report: database and metrics data of global surface ozone observations. Elem Sci Anth 5:26CrossRefGoogle Scholar
  65. Semenov MA, Shewry PR (2011) Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Sci Rep 1:5CrossRefGoogle Scholar
  66. Shiferaw B, Smale M, Braun HJ, Duveiller E, Reynolds M, Muricho G (2013) Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security 5:291–317CrossRefGoogle Scholar
  67. Sicard P, Anav A, De Marco A, Paoletti E (2017) Projected global ground-level ozone impacts on vegetation under different emission and climate scenarios. Atmos Chem Phys 17:12177–12196CrossRefGoogle Scholar
  68. Simpson D, Benedictow A, Berge H, Bergstrom R, Emberson LD, Fagerli H, Flechard CR, Hayman GD, Gauss M, Jonson JE, Jenkin ME, Nyiri A, Richter C, Semeena VS, Tsyro S, Tuovinen JP, Valdebenito A, Wind P (2012) The EMEP MSC-W chemical transport model - technical description. Atmos Chem Phys 12:7825–7865CrossRefGoogle Scholar
  69. Simpson D, Arneth A, Mills G, Solberg S, Uddling J (2014) Ozone - the persistent menace: interactions with the N cycle and climate change. Curr Opin Environ Sustain 9-10:9–19CrossRefGoogle Scholar
  70. Simpson D, Bergstrom R, Imhof H, Wind P (2017) Updates to the EMEP MSC-W model, 2016-2017. Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components. Status report 1/2017. The Norwegian Meteorological Institute, Oslo, Norway, pp 115-122Google Scholar
  71. Stadtler S, Simpson D, Schroder S, Taraborrelli D, Bott A, Schultz M (2018) Ozone impacts of gas-aerosol uptake in global chemistry transport models. Atmos Chem Phys 18:3147–3171CrossRefGoogle Scholar
  72. Tian H, Ren W, Tao B, Sun G, Chappelka A, Wang X, Pan S, Yang J, Liu J, Felzer B, Melillo J, Reilly J (2016) Climate extremes and ozone pollution: a growing threat to China’s food security. Ecosyst Health Sustain 2(1):e01203CrossRefGoogle Scholar
  73. Trnka M, Rotter RP, Ruiz-Ramos M, Kersebaum KC, Olesen JE, Zalud Z, Semenov MA (2014) Adverse weather conditions for European wheat production will become more frequent with climate change. Nat Clim Chang 4:637–643CrossRefGoogle Scholar
  74. Van Dingenen R, Dentener FJ, Raes F, Krol MC, Emberson L, Cofala J (2009) The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos Environ 43:604–618CrossRefGoogle Scholar
  75. Wang XP, Mauzerall DL (2004) Characterizing distributions of surface ozone and its impact on grain production in China, Japan and South Korea: 1990 and 2020. Atmos Environ 38:4383–4402CrossRefGoogle Scholar
  76. Wild O, Fiore AM, Shindell DT, Doherty RM, Collins WJ, Dentener FJ, Schultz MG, Gong S, MacKenzie IA, Zeng G, Hess P, Duncan BN, Bergmann DJ, Szopa S, Jonson JE, Keating TJ, Zuber A (2012) Modelling future changes in surface ozone: a parameterized approach. Atmos Chem Phys 12:2037–2054CrossRefGoogle Scholar
  77. WMO (2017) WMO guidelines on the calculation of climate normals (WMO-No. 1203). World Meteorological Organization, Geneva, pp 1–18Google Scholar
  78. Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421CrossRefGoogle Scholar
  79. Zhang YZ, Wang YH (2016) Climate-driven ground-level ozone extreme in the fall over the Southeast United States. Proc Natl Acad Sci U S A 113:10025–10030CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Agricultural and Biological EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Stockholm Environment Institute, Environment and Geography DepartmentUniversity of YorkYorkUK
  3. 3.EMEP MSC-WNorwegian Meteorological InstituteOsloNorway
  4. 4.Department of Space, Earth and EnvironmentChalmers University of TechnologyGothenburgSweden
  5. 5.Department of AgronomyUniversity of FloridaGainesvilleUSA

Personalised recommendations