Advertisement

Towards a comprehensive characterization of evidence in synthesis assessments: the climate change impacts on the Brazilian water resources

  • Pablo Borges de AmorimEmail author
  • Pedro B. Chaffe
Article

Abstract

The Intergovernmental Panel on Climate Change (IPCC) has put a lot of efforts to describe uncertainties and to judge the confidence level of its major conclusions. Despite a guidance to communicate uncertainty, the assignment of confidence is not sufficiently clear and, thus, hard to be reproduced by the extern community. By conducting a synthesis assessment about the impacts of climate change on the Brazilian water resources, we identified an opportunity to illustrate the characterization of evidence as adopted in IPCC reports. We propose a method to describe the evidence from model outputs wherein the quality and amount of studies, as well as the consistency among their conclusions, are subject of a transparent rating procedure. In summary, the more comprehensive the study in sampling uncertainties, the higher its quality. Likewise, the amount and consistency among conclusions is assigned in a systematic way. The method is applied for synthesizing a collection of 42 peer-reviewed articles. It reveals important aspects about the evidence of the potential impacts of climate change in the Brazilian water resources, such as changes into a drier hydrological regime. However, the use of multi-model ensemble, the evaluation of models, and the observational data is limited. The proposed method enables consistent communication of the degree of evidence in a transparent, traceable, and comprehensive fashion. The method can be used as a tool to support experts on their judgment. The approach is reproducible and can guide synthesis work not only in Brazil but anywhere else.

Abbreviations

ALT

Atlântico Leste

AMZ

Amazônica

AOC

Atlântico Nordeste Ocidental

AOR

Atlântico Nordeste Oriental

ASD

Atlântico Sudeste

ASU

Atlântico Sul

BC

Bias correction

BCS

Bias correction score

CBC

Score of the calibration criteria of BC

CDS

Score of the calibration criteria of DS

CHM

Score of the calibration criteria of HM

CM

Climate modeling

CMIP3

Coupled Model Intercomparison Project Phase 3

CMIP5

Coupled Model Intercomparison Project Phase 5

CMS

Climate modeling score

DS

Downscaling

DSS

Downscaling score

ECM

Score of ensemble size of CM

EDS

Score of the ensemble size of DS

EHM

Score of the ensemble size of HM

ES

Emission/radiative forcing scenarios

ESD

Empirical statistical downscaling

ESS

Emission/radiative forcing scenarios score

GCM

Global climate model

HM

Hydrological modeling

HMS

Hydrological modeling score

IPCC

Intergovernmental Panel on Climate Change

OBC

Score of observational network density of rainfall data of BC

ODH

Score of observational network density of river discharge data of HM

ODS

Score of observational network density of rainfall data of DS

OND

Observational network density

ORH

Score of observational network density of rainfall data of HM

PNB

Parnaíba

PRG

Paraguai

PRN

Paraná

Qmax

Maximum discharge

Qmean

Mean discharge

Qmin

Minimum discharge

QS

Quality score

RCM

Regional climate model

RCP

Representative concentration pathways

RES

Score of range of ES

SFO

São Francisco

SRES

Special report on emissions scenarios

TBC

Score of the type of BC

TES

Score of type of ES

THM

Score of the type of HM

TOC

Tocantins-Araguaia

URU

Uruguai

VBC

Score of the validation criteria of BC

VCM

Score of version of CM

VDS

Score of the validation criteria of DS

VHM

Score of the validation criteria of HM

Notes

Funding information

The authors acknowledge the Brazilian National Council for Scientific and Technological Development (CNPq) for funding this study (Grant Numbers: 150768/2017-6 and 159528/2018-6)

Supplementary material

10584_2019_2430_MOESM1_ESM.docx (1.1 mb)
ESM 1 (DOCX 1.12 MB)
10584_2019_2430_MOESM2_ESM.xlsx (34 kb)
Supplementary Table 1 (XLSX 33.6 kb)
10584_2019_2430_MOESM3_ESM.docx (26 kb)
Supplementary Table 2 (DOCX 25 kb)
10584_2019_2430_MOESM4_ESM.docx (13 kb)
Supplementary Table 3 (DOCX 12 kb)
10584_2019_2430_MOESM5_ESM.xlsx (42 kb)
Supplementary Table 4 (XLSX 41.6 kb)
10584_2019_2430_MOESM6_ESM.docx (20 kb)
Supplementary Table 5 (DOCX 19 kb)

References

  1. Adam KN, Fan FM, Pontes PR, Bravo JM, Collischonn W (2015) Mudanças climáticas e vazões extremas na Bacia do Rio Paraná. Rev Bras Recur Hídr 20:999–1007.  https://doi.org/10.21168/rbrh.v20n4.p999-1007 Google Scholar
  2. Alvarenga LA, de Mello CR, Colombo A, Cuartas LA, Chou SC (2016) Hydrological responses to climate changes in a headwater watershed. Ciênc E Agrotecnologia 40:647–657.  https://doi.org/10.1590/1413-70542016406027716 CrossRefGoogle Scholar
  3. ANA (2017) Conjuntura dos recursos hídricos no Brasil 2017: relatório pleno. Agência Nacional de Águas, BrasíliaGoogle Scholar
  4. Arroio Junior P, Mauad F (2015) Simulação dos Impactos das Mudanças Climáticas na Vazão da Bacia do Ribeirão do Feijão - SP. Rev Bras Recur Hídr 20:741–751.  https://doi.org/10.21168/rbrh.v20n3.p741-751 Google Scholar
  5. Bárdossy A, Das T (2008) Influence of rainfall observation network on model calibration and application. Hydrol Earth Syst Sci 12:77–89.  https://doi.org/10.5194/hess-12-77-2008 CrossRefGoogle Scholar
  6. Beven KJ (2012) Rainfall-runoff modelling: the primer, 2nd edn. Wiley-Blackwell, ChichesterCrossRefGoogle Scholar
  7. Blázquez J, Nuñez MN (2013) Analysis of uncertainties in future climate projections for South America: comparison of WCRP-CMIP3 and WCRP-CMIP5 models. Clim Dyn 41:1039–1056.  https://doi.org/10.1007/s00382-012-1489-7 CrossRefGoogle Scholar
  8. Bosshard T, Carambia M, Goergen K, Kotlarski S, Krahe P, Zappa M, Schär C (2013) Quantifying uncertainty sources in an ensemble of hydrological climate-impact projections. Water Resour Res 49:1523–1536.  https://doi.org/10.1029/2011WR011533 CrossRefGoogle Scholar
  9. Bravo JM, Collischonn W, da Paz AR, Allasia D, Domecq F (2014) Impact of projected climate change on hydrologic regime of the Upper Paraguay River basin. Clim Chang 127:27–41.  https://doi.org/10.1007/s10584-013-0816-2
  10. Brazil (2006a) Caderno da Região Hidrográfica Amazônica. Ministério do Meio Ambiente (MMA), Secretaria de Recursos Hídricos, BrasíliaGoogle Scholar
  11. Brazil (2006b) Caderno da Região Hidrográfica do Paraná. Ministério do Meio Ambiente (MMA), Secretaria de Recursos Hídricos, BrasíliaGoogle Scholar
  12. Brazil (2016) National Adaptation Plan to Climate Change: volume I: general strategy. Ministry of Environment (MMA), BrasíliaGoogle Scholar
  13. Burkett VR, Suarez AG, Bindi M, Conde C, Mukerji R, Prather MJ, St. Clair AL, Yohe GW (2014) In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Point of departure. In: Climate change 2014: impacts, adaptation, and vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 169–194Google Scholar
  14. CEPED UFSC (2013) Atlas brasileiro de desastres naturais 1991 a 2012: volume Brasil. Universidade Federal de Santa Catarina. Centro Universitário de Estudos e Pesquisas sobre Desastres (CEPED UFSC), FlorianópolisGoogle Scholar
  15. Chagas VBP, Chaffe PLB (2018) The role of land cover in the propagation of rainfall into streamflow trends. Water Resour Res 54:5986–6004.  https://doi.org/10.1029/2018WR022947 CrossRefGoogle Scholar
  16. de Queiroz AR, Marangon Lima LM, Marangon Lima JW, da Silva BC, Scianni LA (2016) Climate change impacts in the energy supply of the Brazilian hydro-dominant power system. Renew Energy 99:379–389.  https://doi.org/10.1016/j.renene.2016.07.022 CrossRefGoogle Scholar
  17. Ehret U, Zehe E, Wulfmeyer V, Warrach-Sagi K, Liebert J (2012) Should we apply bias correction to global and regional climate model. Hydrol Earth Syst Sci 16:3391–3404.  https://doi.org/10.5194/hess-16-3391-2012 CrossRefGoogle Scholar
  18. Eisner S, Flörke M, Chamorro A, Daggupati P, Donnelly C, Huang J, Hundecha Y, Koch H, Kalugin A, Krylenko I, Mishra V, Piniewski M, Samaniego L, Seidou O, Wallner M, Krysanova V (2017) An ensemble analysis of climate change impacts on streamflow seasonality across 11 large river basins. Clim Chang 141:401–417.  https://doi.org/10.1007/s10584-016-1844-5 CrossRefGoogle Scholar
  19. Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27:1547–1578.  https://doi.org/10.1002/joc.1556 CrossRefGoogle Scholar
  20. Guimberteau M, Ciais P, Ducharne A, Boisier JP, Dutra Aguiar AP, Biemans H, De Deurwaerder H, Galbraith D, Kruijt B, Langerwisch F, Poveda G, Rammig A, Rodriguez DA, Tejada G, Thonicke K, Von Randow C, Von Randow RCS, Zhang K, Verbeeck H (2017) Impacts of future deforestation and climate change on the hydrology of the Amazon Basin: a multi-model analysis with a new set of land-cover change scenarios. Hydrol Earth Syst Sci 21:1455–1475.  https://doi.org/10.5194/hess-21-1455-2017 CrossRefGoogle Scholar
  21. Hawkins E, Sutton R (2011) The potential to narrow uncertainty in projections of regional precipitation change. Clim Dyn 37:407–418.  https://doi.org/10.1007/s00382-010-0810-6 CrossRefGoogle Scholar
  22. Kattenberg A, Giorgi R, Grassl H, Meehl GA, Mitchell JFB, Stouffer RJ, Tokioka T, Weaver AJ, Wigley TML (1996) Climate models - projections of future climate. In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) Climate change 1995 - the science of climate change. Cambridge University Press, Cambridge, pp 285–358Google Scholar
  23. Krysanova V, Vetter T, Eisner S, Huang S, Pechlivanidis I, Strauch M, Gelfan A, Kumar R, Aich V, Arheimer B, Chamorro A, van Griensven A, Kundu D, Lobanova A, Mishra V, Plötner S, Reinhardt J, Seidou O, Wang X, Wortmann M, Zeng X, Hattermann FF (2017) Intercomparison of regional-scale hydrological models and climate change impacts projected for 12 large river basins worldwide—a synthesis. Environ Res Lett 12:105002.  https://doi.org/10.1088/1748-9326/aa8359 CrossRefGoogle Scholar
  24. Krysanova V, Donnelly C, Gelfan A, Gerten D, Arheimer B, Hattermann F, Kundzewicz ZW (2018) How the performance of hydrological models relates to credibility of projections under climate change. Hydrol Sci J 63:696–720.  https://doi.org/10.1080/02626667.2018.1446214 CrossRefGoogle Scholar
  25. Kundzewicz ZW, Krysanova V, Dankers R, Hirabayashi Y, Kanae S, Hattermann FF, Huang S, Milly PCD, Stoffel M, Driessen PPJ, Matczak P, Quevauviller P, Schellnhuber H-J (2017) Differences in flood hazard projections in Europe – their causes and consequences for decision making. Hydrol Sci J 62:1–14.  https://doi.org/10.1080/02626667.2016.1241398 Google Scholar
  26. Kundzewicz ZW, Krysanova V, Benestad RE, Hov ø, Piniewski M, Otto IM (2018) Uncertainty in climate change impacts on water resources. Environ Sci Pol 79:1–8.  https://doi.org/10.1016/j.envsci.2017.10.008 CrossRefGoogle Scholar
  27. Mach KJ, Mastrandrea MD, Freeman PT, Field CB (2017) Unleashing expert judgment in assessment. Glob Environ Chang 44:1–14.  https://doi.org/10.1016/j.gloenvcha.2017.02.005 CrossRefGoogle Scholar
  28. Manning M, Petit M, Easterling D, Murphy D, Patwardhan A, Rogner H-H, Swart R, Yohe G (2004) IPCC workshop on describing scientific uncertainties in climate change to support analysis of risk and of options: workshop report. Intergovernmental Panel on Climate Change (IPCC), GenevaGoogle Scholar
  29. Maraun D, Widmann M (2018) Statistical downscaling and bias correction for climate research, 1st edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  30. Maraun D, Widmann M, Gutiérrez JM, Kotlarski S, Chandler RE, Hertig E, Wibig J, Huth R, Wilcke RAI (2015) VALUE: a framework to validate downscaling approaches for climate change studies. Earths Future 3:1–14.  https://doi.org/10.1002/2014EF000259 CrossRefGoogle Scholar
  31. Maraun D, Shepherd TG, Widmann M, Zappa G, Walton D, Gutiérrez JM, Hagemann S, Richter I, Soares PMM, Hall A, Mearns LO (2017) Towards process-informed bias correction of climate change simulations. Nat Clim Chang 7:664–773.  https://doi.org/10.1038/nclimate3418 CrossRefGoogle Scholar
  32. Mastrandrea MD, Field CB, Stocker TF, Edenhofer O, Ebi KL, Frame DJ, Held H, Kriegler E, Mach K, Matschoss PR, Plattner G-K, Yohe GW, Zwiers FW (2010) Guidance note for lead authors of the IPCC fifth assessment report on consistent treatment of uncertaintiesGoogle Scholar
  33. Mastrandrea MD, Mach KJ, Plattner G-K, Edenhofer O, Stocker TF, Field CB, Ebi KL, Matschoss PR (2011) The IPCC AR5 guidance note on consistent treatment of uncertainties: a common approach across the working groups. Clim Chang 108:675–691.  https://doi.org/10.1007/s10584-011-0178-6 CrossRefGoogle Scholar
  34. Mitchell J, Manabe S, Meleshko V, Tokioka T (1990) Equilibrium climate change - and its implications for the future. In: Houghton JT, Jenkins GJ, Ephraums JJ (eds) Climate change: the IPCC scientific assessment. Cambridge University Press, Cambridge, pp 131–164Google Scholar
  35. Moss R, Schneider S (2000) Uncertainties in the IPCC TAR: recommendations to lead authors for more consistent assessment and reporting. In: Pachauri R, Taniguchi T, Tanaka K (eds) Guidance papers on the cross-cutting issues of the third assessment report of the IPCC. World Meteorological Organization, Geneva, pp 33–51Google Scholar
  36. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756.  https://doi.org/10.1038/nature08823 CrossRefGoogle Scholar
  37. Nakićenović N, Swart R (eds) (2000) Special report on emissions scenarios: a special report of working group III of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  38. Nóbrega MT, Collischonn W, Tucci CEM, Paz AR (2011) Uncertainty in climate change impacts on water resources in the Rio Grande Basin, Brazil. Hydrol Earth Syst Sci 15:585–595.  https://doi.org/10.5194/hess-15-585-2011 CrossRefGoogle Scholar
  39. Oliveira GG, Pedrollo OC, Castro NMR (2015) Stochastic approach to analyzing the uncertainties and possible changes in the availability of water in the future based on scenarios of climate change. Hydrol Earth Syst Sci 19:3585–3604.  https://doi.org/10.5194/hess-19-3585-2015 CrossRefGoogle Scholar
  40. Oppenheimer M, Little CM, Cooke RM (2016) Expert judgement and uncertainty quantification for climate change. Nat Clim Chang 6:445–451.  https://doi.org/10.1038/nclimate2959 CrossRefGoogle Scholar
  41. Perazzoli M, Pinheiro A, Kaufmann V (2013) Assessing the impact of climate change scenarios on water resources in southern Brazil. Hydrol Sci J 58:77–87.  https://doi.org/10.1080/02626667.2012.742195 CrossRefGoogle Scholar
  42. Pinheiro A, Graciano RLG, Kaufmann V (2013) Simulating effects of climate scenarios on hydrological processes in southern Brazil using a lysimeter. Int J Climatol 33:2206–2214.  https://doi.org/10.1002/joc.3591 CrossRefGoogle Scholar
  43. Prudhomme C, Davies H (2009) Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 1: baseline climate. Clim Chang 93:177–195.  https://doi.org/10.1007/s10584-008-9464-3 CrossRefGoogle Scholar
  44. Ribeiro Júnior L, Zuffo A, Silva B (2016) Development of a tool for hydroeletric reservoir operation with multiple uses considering effects of climate changes. Case study of Furnas HPP. Rev Bras Recur Hídr 21:300–313.  https://doi.org/10.21168/rbrh.v21n2.p300-313 Google Scholar
  45. Ribeiro Neto A, da Paz AR, Marengo JA, Chou SC (2016) Hydrological processes and climate change in hydrographic regions of Brazil. J Water Resour Prot 08:1103–1127.  https://doi.org/10.4236/jwarp.2016.812087 CrossRefGoogle Scholar
  46. Sorribas MV, Paiva RCD, Melack JM, Bravo JM, Jones C, Carvalho L, Beighley E, Forsberg B, Costa MH (2016) Projections of climate change effects on discharge and inundation in the Amazon basin. Clim Chang 136:555–570.  https://doi.org/10.1007/s10584-016-1640-2 CrossRefGoogle Scholar
  47. Stainforth DA, Downing TE, Washington R, Lopez A, New M (2007) Issues in the interpretation of climate model ensembles to inform decisions. Philos Trans R Soc A Math Phys Eng Sci 365:2163–2177.  https://doi.org/10.1098/rsta.2007.2073 CrossRefGoogle Scholar
  48. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498.  https://doi.org/10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  49. Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 456–457:12–29.  https://doi.org/10.1016/j.jhydrol.2012.05.052 CrossRefGoogle Scholar
  50. Torres RR, Lapola DM, Marengo JA, Lombardo MA (2012) Socio-climatic hotspots in Brazil. Clim Chang 115:597–609.  https://doi.org/10.1007/s10584-012-0461-1 CrossRefGoogle Scholar
  51. Vetter T, Reinhardt J, Flörke M, van Griensven A, Hattermann F, Huang S, Koch H, Pechlivanidis IG, Plötner S, Seidou O, Su B, Vervoort RW, Krysanova V (2017) Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins. Clim Chang 141:419–433.  https://doi.org/10.1007/s10584-016-1794-y CrossRefGoogle Scholar
  52. Viola MR, de Mello CR, Chou SC, Yanagi SN, Gomes JL (2015) Assessing climate change impacts on upper Grande River basin hydrology, Southeast Brazil. Int J Climatol 35:1054–1068.  https://doi.org/10.1002/joc.4038 CrossRefGoogle Scholar
  53. WMO (2008) Guide to hydrological practices volume I. hydrology – from measurement to hydrological information, vol 2, 6th edn. World Meteorological Organization (WMO), GenevaGoogle Scholar
  54. Yohe G, Oppenheimer M (2011) Evaluation, characterization, and communication of uncertainty by the intergovernmental panel on climate change—an introductory essay. Clim Chang 108:629–639.  https://doi.org/10.1007/s10584-011-0176-8 CrossRefGoogle Scholar
  55. Zaninelli PG, Menéndez CG, Falco M, López-Franca N, Carril AF (2018) Future hydroclimatological changes in South America based on an ensemble of regional climate models. Clim Dyn.  https://doi.org/10.1007/s00382-018-4225-0

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Graduate Program in Environmental EngineeringFederal University of Santa CatarinaFlorianópolisBrazil
  2. 2.Department of Sanitary and Environmental EngineeringFederal University of Santa CatarinaFlorianópolisBrazil

Personalised recommendations