Climatic Change

, Volume 153, Issue 1–2, pp 235–251 | Cite as

Quantifying the effects of solar geoengineering on vegetation

  • Katherine DagonEmail author
  • Daniel P. Schrag


Climate change will have significant impacts on vegetation and biodiversity. Solar geoengineering has potential to reduce the climate effects of greenhouse gas emissions through albedo modification, yet more research is needed to better understand how these techniques might impact terrestrial ecosystems. Here, we utilize the fully coupled version of the Community Earth System Model to run transient solar geoengineering simulations designed to stabilize radiative forcing starting mid-century, relative to the Representative Concentration Pathway 6 (RCP6) scenario. Using results from 100-year simulations, we analyze model output through the lens of ecosystem-relevant metrics. We find that solar geoengineering improves the conservation outlook under climate change, but there are still potential impacts on terrestrial vegetation. We show that rates of warming and the climate velocity of temperature are minimized globally under solar geoengineering by the end of the century, while trends persist over land in the Northern Hemisphere. Moisture is an additional constraint on vegetation, and in the tropics the climate velocity of precipitation dominates over that of temperature. Shifts in the amplitude of temperature and precipitation seasonal cycles have implications for vegetation phenology. Different metrics for vegetation productivity also show decreases under solar geoengineering relative to RCP6, but could be related to the model parameterization of nutrient cycling. The coupling of water and carbon cycles is found to be an important mechanism for understanding changes in ecosystems under solar geoengineering.


Climate change Solar geoengineering Climate modeling Terrestrial ecosystems 



We thank the editor and two anonymous reviewers for suggestions that improved the paper. The model simulations in this paper were run on the Odyssey cluster supported by the FAS Division of Science, Research Computing Group at Harvard University. We thank Zhiming Kuang for the use of his computational resources. Further data analysis was completed using the computing resources of the Climate and Global Dynamics Information Systems Group at the National Center for Atmospheric Research. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Funding information

This received funding from the NCAR Advanced Study Program.

Supplementary material

10584_2019_2387_MOESM1_ESM.pdf (3.7 mb)
(PDF 3.66 MB)


  1. Alton PB, North PR, Los SO (2007) The impact of diffuse sunlight on canopy light-use efficiency, gross photosynthetic product and net ecosystem exchange in three forest biomes. Glob Chang Biol 13:776– 787CrossRefGoogle Scholar
  2. Bala G, Caldeira K, Mirin A, Wickett M, Delire C, Phillips TJ (2006) Biogeophysical effects of CO2 fertilization on global climate. Tellus B Chem Phys Meteorol 58(5):620–627CrossRefGoogle Scholar
  3. Bala G, Duffy PB, Taylor KE (2008) Impact of geoengineering schemes on the global hydrological cycle. Proc Natl Acad Sci 105(22):7664–7669CrossRefGoogle Scholar
  4. Belda M, Holtanová E, Kalvová J, Halenka T (2016) Global warming-induced changes in climate zones based on CMIP5 projections. Clim Res 71(1):17–31CrossRefGoogle Scholar
  5. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15(4):365–377CrossRefGoogle Scholar
  6. Betts RA, Boucher O, Collins M, Cox PM, Falloon PD, Gedney N, Hemmin DL, Huntingford C, Jones CD, Sexton DM, Webb MJ (2007) Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448(7157):1037–1041CrossRefGoogle Scholar
  7. Bonan GB, Levis S (2010) Quantifying carbon-nitrogen feedbacks in the Community Land Model (CLM4). Geophys Res Lett 37(7):L07401CrossRefGoogle Scholar
  8. Bonan GB, Levis S, Kergoat L, Oleson KW (2002) Landscapes as patches of plant functional types: an integrating concept for climate and ecosystem models. Glob Biogeochem Cycles 16(2).
  9. Burrows MT, Schoeman DS, Buckley LB, Moore P, Poloczanska ES, Brander KM, Brown C, Bruno JF, Duarte CM, Halpern BS, Holding J, Kappel CV, Kiessling W, O’Connor MI, Pandolfi JM, Parmesan C, Schwing FB, Sydeman WJ, Richardson AJ (2011) The pace of shifting climate in marine and terrestrial ecosystems. Science 334(6056):652–655CrossRefGoogle Scholar
  10. Burrows MT, Schoeman DS, Richardson AJ, Molinos JG, Hoffmann A, Buckley LB, Moore PJ, Brown CJ, Bruno JF, Duarte CM, Halpern BS, Hoegh-Guldberg O, Kappel CV, Kiessling W, O’Connor MI, Pandolfi JM, Parmesan C, Sydeman WJ, Ferrier S, Williams KJ, Poloczanska ES (2014) Geographical limits to species-range shifts are suggested by climate velocity. Nature 507(7493):492–495CrossRefGoogle Scholar
  11. Caldeira K, Wood L (2008) Global and Arctic climate engineering: numerical model studies. Philosophical Transactions of the Royal Society A: Mathematical. Phys Eng Sci 366(1882):4039–4056CrossRefGoogle Scholar
  12. Cao L (2018) The effects of solar radiation management on the carbon cycle. Current Climate Change Reports 4(1):41–50CrossRefGoogle Scholar
  13. Cheng SJ, Bohrer G, Steiner AL, Hollinger DY, Suyker A, Phillips RP, Nadelhoffer KJ (2015) Variations in the influence of diffuse light on gross primary productivity in temperate ecosystems. Agric For Meteorol 201:98–110CrossRefGoogle Scholar
  14. Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22(7):357–365CrossRefGoogle Scholar
  15. Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric For Meteorol 54:107–136CrossRefGoogle Scholar
  16. Crutzen PJ (2006) Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Clim Chang 77:211–220CrossRefGoogle Scholar
  17. Dagon K, Schrag DP (2016) Exploring the effects of solar radiation management on water cycling in a coupled land-atmosphere model. J Clim 29(7):2635–2650CrossRefGoogle Scholar
  18. Dagon K, Schrag DP (2017) Regional climate variability under model simulations of solar geoengineering. J Geophys Res: Atmos 122(22):12,106–12,121. 2017JD027110Google Scholar
  19. Doutriaux-Boucher M, Webb MJ, Gregory JM, Boucher O (2009) Carbon dioxide induced stomatal closure increases radiative forcing via a rapid reduction in low cloud. Geophys Res Lett 36(2):L02703CrossRefGoogle Scholar
  20. Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90CrossRefGoogle Scholar
  21. Feng S, Ho C-H, Hu Q, Oglesby RJ, Jeong S-J, Kim B-M (2012) Evaluating observed and projected future climate changes for the Arctic using the koppen-Trewarthä climate classification. Clim Dyn 38(7):1359–1373CrossRefGoogle Scholar
  22. Feng S, Hu Q, Huang W, Ho C -H, Li R, Tang Z (2014) Projected climate regime shift under future global warming from multi-model, multi-scenario CMIP5 simulations. Glob Planet Chang 112:41– 52CrossRefGoogle Scholar
  23. Fisher RA, Muszala S, Verteinstein M, Lawrence P, Xu C, McDowell NG, Knox RG, Koven C, Holm J, Rogers BM, Spessa A, Lawrence D, Bonan G (2015) Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED). Geosci Model Dev 8(11):3593–3619CrossRefGoogle Scholar
  24. Fraedrich K, Gerstengarbe F-W, Werner PC (2001) Climate shifts during the last century. Clim Chang 50(4):405–417CrossRefGoogle Scholar
  25. Franks PJ, Adams MA, Amthor JS, Barbour MM, Berry JA, Ellsworth DS, Farquhar GD, Ghannoum O, Lloyd J, McDowell N, Norby RJ, Tissue DT, von Caemmerer S (2013) Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century. New Phytol 197 (4):1077–1094CrossRefGoogle Scholar
  26. Fujino J, Nair R, Kainuma M, Masui T, Matsuoka Y (2006) Multi-gas mitigation analysis on stabilization scenarios using aim global model. Energy J 27:343–353Google Scholar
  27. Fyfe JC, Cole JNS, Arora VK, Scinocca JF (2013) Biogeochemical carbon coupling influences global precipitation in geoengineering experiments. Geophys Res Lett 40(3):651–655CrossRefGoogle Scholar
  28. Gallardo C, Gil V, Tejeda C, Sánchez E, Gaertner MA (2016) Koppen-trewartha classification used to assess climate changes simulated by a regional climate model ensemble over South Americä. Clim Res 68(2-3):137–149CrossRefGoogle Scholar
  29. Glienke S, Irvine PJ, Lawrence MG (2015) The impact of geoengineering on vegetation in experiment G1 of the geoMIP. J Geophys Res: Atmos 120(19):10196–10213Google Scholar
  30. Govindasamy B, Caldeira K (2000) Geoengineering Earth’s radiation balance to mitigate CO2-induced climate change. Geophys Res Lett 27(14):2141–2144CrossRefGoogle Scholar
  31. Govindasamy B, Thompson S, Duffy PB, Caldeira K, Delire C (2002) Impact of geoengineering schemes on the terrestrial biosphere. Geophys Res Lett 29 (22):2061. CrossRefGoogle Scholar
  32. Gu L, Baldocchi D, Verma SB, Black TA, Vesala T, Falge EM, Dowty PR (2002) Advantages of diffuse radiation for terrestrial ecosystem productivity. J Geophys Res 107(D6).
  33. Higgins SI, Scheiter S (2012) Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488(7410):209–212CrossRefGoogle Scholar
  34. Irvine PJ, Ridgwell A, Lunt DJ (2010) Assessing the regional disparities in geoengineering impacts. Geophys Res Lett 37:L18702. CrossRefGoogle Scholar
  35. Irvine PJ, Boucher O, Kravitz B, Alterskjær K, Cole JNS, Ji D, Jones A, Lunt DJ, Moore JC, Muri H, Niemeier U, Robock A, Singh B, Tilmes S, Watanabe S, Yang S, Yoon J-H (2014) Key factors governing uncertainty in the response to sunshade geoengineering from a comparison of the GeoMIP ensemble and a perturbed parameter ensemble. J Geophys Res: Atmos 119(13):7946–7962Google Scholar
  36. Ito A (2017) Solar radiation management and ecosystem functional responses. Clim Chang 142(1):53–66CrossRefGoogle Scholar
  37. Jones A, Haywood JM, Alterskjær K, Boucher O, Cole JNS, Curry CL, Irvine PJ, Ji D, Kravitz B, Kristjánsson JE, Moore JC, Niemeier U, Robock A, Schmidt H, Singh B, Tilmes S, Watanabe S, Yoon J-H (2013) The impact of abrupt suspension of solar radiation management (termination effect) in experiment G2 of the Geoengineering Model Intercomparison Project (GeoMIP). J Geophys Res: Atmos 118(17):9743–9752Google Scholar
  38. Kalidindi S, Bala G, Modak A, Caldeira K (2015) Modeling of solar radiation management: a comparison of simulations using reduced solar constant and stratospheric sulphate aerosols. Clim Dyn 44(9):2909–2925CrossRefGoogle Scholar
  39. Keith DW, MacMartin DG (2015) A temporary, moderate and responsive scenario for solar geoengineering. Nat Clim Chang 5(3):201–206CrossRefGoogle Scholar
  40. Koven CD (2013) Boreal carbon loss due to poleward shift in low-carbon ecosystems. Nat Geosci 6:452–456CrossRefGoogle Scholar
  41. Kravitz B, Caldeira K, Boucher O, Robock A, Rasch PJ, Alterskjær K, Karam DB, Cole JNS, Curry CL, Haywood JM, Irvine PJ, Ji D, Jones A, Kristjánsson JE, Lunt DJ, Moore JC, Niemeier U, Schmidt H, Schulz M, Singh B, Tilmes S, Watanabe S, Yang S, Yoon J-H (2013) Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP). J Geophys Res 118(15):1–13Google Scholar
  42. Kravitz B, Rasch PJ, Forster PM, Andrews T, Cole JNS, Irvine PJ, Ji D, Kristjánsson JE, Moore JC, Muri H, Niemeier U, Robock A, Singh B, Tilmes S, Watanabe S, Yoon J-H (2013) An energetic perspective on hydrological cycle changes in the Geoengineering Model Intercomparison Project. J Geophys Res: Atmos 118 (23):13087–13102Google Scholar
  43. Kravitz B, MacMartin DG, Robock A, Rasch PJ, Ricke KL, Cole JNS, Curry CL, Irvine PJ, Ji D, Keith DW, Kristjansson JE, Moore JC, Muri H, Singh B, Tilmes S, Watanabe S, Yang S, Yoon J-H (2014) A multi-model assessment of regional climate disparities caused by solar geoengineering. Environ Res Lett 9(7):074013. CrossRefGoogle Scholar
  44. Kravitz B, MacMartin DG, Rasch PJ, Jarvis AJ (2015) A new method of comparing forcing agents in climate models. J Clim 28(20):8203–8218CrossRefGoogle Scholar
  45. Lean J, Beer J, Bradley R (1995) Reconstruction of solar irradiance since 1610: Implications for climate change. Geophys Res Lett 22(23):3195–3198CrossRefGoogle Scholar
  46. Lee E, Felzer BS, Kothavala Z (2013) Effects of nitrogen limitation on hydrological processes in CLM4-CN. J Adv Model Earth Syst 5(4):741–754CrossRefGoogle Scholar
  47. Leemans R (1990) Possible changes in natural vegetation patterns due to global warming. IIASA Working Paper WP-90-008 International Institute for Applied Systems Analysis Laxenburg, AustriaGoogle Scholar
  48. Lewis SL, Malhi Y, Phillips OL (2004) Fingerprinting the impacts of global change on tropical forests. Philosophical Transactions of the Royal Society of London B: Biological Sciences 359(1443):437–462CrossRefGoogle Scholar
  49. Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462(7276):1052–1055CrossRefGoogle Scholar
  50. Luo T, Pan Y, Ouyang H, Shi P, Luo J, Yu Z, Lu Q (2004) Leaf area index and net primary productivity along subtropical to alpine gradients in the Tibetan Plateau. Glob Ecol Biogeogr 13(4):345–358CrossRefGoogle Scholar
  51. Masui T, Matsumoto K, Hijioka Y, Kinoshita T, Nozawa T, Ishiwatari S, Kato E, Shukla PR, Yamagata Y, Kainuma M (2011) An emission pathway for stabilization at 6 wm−2 radiative forcing. Clim Chang 109(1):59CrossRefGoogle Scholar
  52. McCormack CG, Born W, Irvine PJ, Achterberg EP, Amano T, Ardron J, Foster PN, Gattuso J -P, Hawkins SJ, Hendy E, Kissling WD, Lluch-Cota SE, Murphy EJ, Ostle N, Owens NJP, Perry RI, Pörtner HO, Scholes RJ, Schurr FM, Schweiger O, Settele J, Smith RK, Smith S, Thompson J, Tittensor DP, van Kleunen M, Vivian C, Vohland K, Warren R, Watkinson AR, Widdicombe S, Williamson P, Woods E, Blackstock JJ, Sutherland WJ (2016) Key impacts of climate engineering on biodiversity and ecosystems, with priorities for future research. J Integr Environ Sci 13(2-4):103–128Google Scholar
  53. McCusker KE, Armour KC, Bitz CM, Battisti DS (2014) Rapid and extensive warming following cessation of solar radiation management. Environ Res Lett 9 (2):024005CrossRefGoogle Scholar
  54. Meinshausen M, Raper SCB, Wigley TML (2011) Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 – Part 1: model description and calibration. Atmos Chem Phys 11(4):1417–1456CrossRefGoogle Scholar
  55. Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox PM (2003) Impact of changes in diffuse radiation on the global land carbon sink. Nature 458:1014–1017CrossRefGoogle Scholar
  56. Modak A, Bala G (2014) Sensitivity of simulated climate to latitudinal distribution of solar insolation reduction in solar radiation management. Atmos Chem Phys 14 (15):7769–7779CrossRefGoogle Scholar
  57. Muri H, Niemeier U, Kristjánsson JE (2015) Tropical rainforest response to marine sky brightening climate engineering. Geophys Res Lett 42(8):2951–2960CrossRefGoogle Scholar
  58. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefGoogle Scholar
  59. Myhre G, Highwood EJ, Shine KP, Stordal F (1998) New estimates of radiative forcing due to well mixed greenhouse gases. Geophys Res Lett 25(14):2715–2718CrossRefGoogle Scholar
  60. Naik V, Wuebbles DJ, Delucia EH, Foley JA (2003) Influence of geoengineered climate on the terrestrial biosphere. Environ Manag 32(3):373–381CrossRefGoogle Scholar
  61. Niemeier U, Schmidt H, Alterskjær K, Kristjánsson JE (2013) Solar irradiance reduction via climate engineering: Impact of different techniques on the energy balance and the hydrological cycle. J Geophys Res 118(21):11905–11917Google Scholar
  62. Oleson KW, Lawrence DM, Bonan GB, Flanner MG, Kluzek E, Lawrence PJ, Levis S, Swenson SC, Thornton PE (2010) Technical Description of version 4.0 of the Community Land Model (CLM). Technical Report TN-478+STR National Center for Atmospheric ResearchGoogle Scholar
  63. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42CrossRefGoogle Scholar
  64. Peng J, Dan L, Dong W (2014) Are there interactive effects of physiological and radiative forcing produced by increased CO2 concentration on changes of land hydrological cycle?. Glob Planet Chang 112:64–78CrossRefGoogle Scholar
  65. Proctor J, Hsiang S, Burney J, Burke M, Schlenker W (2018) Estimating global agricultural effects of geoengineering using volcanic eruptions. Nature 560(7719):480–483CrossRefGoogle Scholar
  66. Rasch PJ, Crutzen PJ, Coleman DB (2008) Exploring the geoengineering of climate using stratospheric sulfate aerosols: the role of particle size. Geophys Res Lett 35:L02809. CrossRefGoogle Scholar
  67. Ricke KL, Morgan MG, Allen MR (2010) Regional climate response to solar-radiation management. Nat Geosci 3(8):537–541CrossRefGoogle Scholar
  68. Russell LM, Rasch PJ, Mace GM, Jackson RB, Shepherd J, Liss P, Leinen M, Schimel D, Vaughan NE, Janetos AC, Boyd PW, Norby RJ, Caldeira K, Merikanto J, Artaxo P, Melillo J, Morgan MG (2012) Ecosystem impacts of geoengineering: a review for developing a science plan. AMBIO 41(4):350–369CrossRefGoogle Scholar
  69. Schmidt H, Alterskjær K, Karam DB, Boucher O, Jones A, Kristjánsson JE, Niemeier U, Schulz M, Aaheim A, Benduhn F, Lawrence M, Timmreck C (2012) Solar irradiance reduction to counteract radiative forcing from a quadrupling of CO2: Climate responses simulated by four earth system models. Earth Syst Dynam 3 (1):63–78CrossRefGoogle Scholar
  70. Shepherd J, Rayner S (2009) Geoengineering the climate: science, governance and uncertainty. Policy Doc. 10/09 RS1636 The Royal SocietyGoogle Scholar
  71. Thornton PE, Lamarque J-F, Rosenbloom NA, Mahowald NM (2007) Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochem Cycles 21:GB4018. CrossRefGoogle Scholar
  72. Thuiller W, Albert C, Araújo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgley GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspectives in Plant Ecology, Evolution and Systematics 9(3):137–152. Space matters - Novel developments in plant ecology through spatial modellingCrossRefGoogle Scholar
  73. Tilmes S, Fasullo J, Lamarque J-F, Marsh DR, Mills M, Alterskjær K, Muri H, Kristjánsson JE, Boucher O, Schulz M, Cole JNS, Curry CL, Jones A, Haywood JM, Irvine PJ, Ji D, Moore JC, Karam DB, Kravitz B, Rasch PJ, Singh B, Yoon J-H, Niemeier U, Schmidt H, Robock A, Yang S, Watanabe S (2013) The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP). J Geophys Res: Atmos 118 (19):11036–11058Google Scholar
  74. Tingley MP, Stine AR, Huybers P (2014) Temperature reconstructions from tree-ring densities overestimate volcanic cooling. Geophys Res Lett 41:7838–7845CrossRefGoogle Scholar
  75. Tjiputra JF, Grini A, Lee H (2016) Impact of idealized future stratospheric aerosol injection on the large-scale ocean and land carbon cycles. J Geophys Res Biogeosci 121(1):2–27CrossRefGoogle Scholar
  76. Trisos CH, Amatulli G, Gurevitch J, Robock A, Xia L, Zambri B (2018) Potentially dangerous consequences for biodiversity of solar geoengineering implementation and termination. Nature Ecology & Evolution 2:475–482CrossRefGoogle Scholar
  77. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31CrossRefGoogle Scholar
  78. Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416(6879):389–395CrossRefGoogle Scholar
  79. Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJB, Ault TR, Bolmgren K, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C, Salamin N, Schwartz MD, Cleland EE (2012) Warming experiments underpredict plant phenological responses to climate change. Nature 485(7399):494–497CrossRefGoogle Scholar
  80. Xia L, Robock A, Tilmes S, Neely RR III (2016) Stratospheric sulfate geoengineering could enhance the terrestrial photosynthesis rate. Atmos Chem Phys 16(3):1479–1489CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.National Center for Atmospheric ResearchBoulderUSA
  2. 2.Department of Earth and Planetary SciencesHarvard UniversityCambridgeUSA

Personalised recommendations