Advertisement

Climatic Change

, Volume 153, Issue 1–2, pp 219–234 | Cite as

Invasive species and carbon flux: the case of invasive beavers (Castor canadensis) in riparian Nothofagus forests of Tierra del Fuego, Chile

  • Chloe Margaret PapierEmail author
  • Helen Mills Poulos
  • Alejandro Kusch
Article

Abstract

Forests are important moderators of global atmospheric CO2 emissions, making them a key focus of terrestrial C-cycling research. The 5th assessment report of the Intergovernmental Panel on Climate Change explicitly calls upon nations to enhance C-stock accounting and mitigate losses of global forest C sinks, which inherently will require more accurate and higher spatial resolution carbon accounting. Monitoring and predicting how disturbances, such as invasive species, influence forest C stocks and the transfer of C from live to dead pools remains a high priority both in the scientific and policy communities. We documented the effects of invasive North American beavers (Castor canadensis) on C-sequestration of riparian Nothofagus forests in Tierra del Fuego, Chile. Our paired plot sampling design quantified significant losses from beaver invasion in total aboveground, live standing, dead standing, and dead and downed C stocks (P < 0.001, paired t tests). We extrapolated stand-level C losses to the entire study area using a Maxent habitat suitability model and estimated that 1.177 (± 0.103) Tg C would be lost if all of the predicted 18,384 ha of invasible habitat (14% of the total forested area) were colonized by beavers. These results document the impacts of invasive mammals on large terrestrial C sinks and highlight the need for understanding the magnitude of such effects across both landscape- and regional-scales.

Notes

Acknowledgements

The authors wish to thank Daniela Droguett, Camila Mena Ruíz, Nicol Gallardo Ros, Rodrigo Munzenmayer Muñoz, Miguel Barrientos Hernandez, and all the other park rangers from Karukinka Park. They also thank Dr. Andrew Barton from the University of Maine at Farmington for helpful comments in preparation of the manuscript.

Author contribution

Chloe Papier designed the study, did all of the field work and analysis, and wrote the paper. Helen Poulos designed the study, assisted with analyses, and helped write the paper. Alejandro Kusch assisted with the study design and the field component of the study.

Funding information

Funding for this research came from a Middlebury Sustainability Grant and a Wesleyan University College of the Environment Fellowship.

References

  1. Allen AW (1983) Habitat suitability index models: beaver. Western Energy and Land Use Team, Division of Biological Service, Research and Development, Fish and Wildlife Service, US Department of the Interior Fort Collins, ColoradoGoogle Scholar
  2. Anagnostakis SL (1987) Chestnut blight: the classical problem of an introduced pathogen. Mycologia 79:23–37CrossRefGoogle Scholar
  3. Anderson CB, Griffith CR, Rosemond AD, Rozzi R, Dollenz O (2006) The effects of invasive North American beavers on riparian plant communities in Cape Horn, Chile: do exotic beavers engineer differently in sub-Antarctic ecosystems? Biol Conserv 128:467–474CrossRefGoogle Scholar
  4. Anderson CB, PASTUR G, Lencinas MV, Wallem PK, Moorman MC, Rosemond AD (2009) Do introduced North American beavers Castor canadensis engineer differently in southern South America? An overview with implications for restoration. Mammal Rev 39:33–52CrossRefGoogle Scholar
  5. Barrera MD, Frangi JL, Richter LL, Perdomo MH, Pinedo LB (2000) Structural and functional changes in Nothofagus pumilio forests along an altitudinal gradient in Tierra del Fuego, Argentina. J Veg Sci 11:179–188CrossRefGoogle Scholar
  6. Berndes G, Abt B, Asikainen A, Cowie A, Dale V, Egnell G, Lindner M, Marelli L, Paré D, Pingoud K (2016) Forest biomass, carbon neutrality and climate change mitigation. From science to policy 3. European Forest Institute, JoensuuGoogle Scholar
  7. Bouska KL, Whitledge GW, Lant C (2015) Development and evaluation of species distribution models for fourteen native central US fish species. Hydrobiologia 747:159–176CrossRefGoogle Scholar
  8. Charles H, Dukes JS (2008) Impacts of invasive species on ecosystem services. Biological invasions. Springer, Berlin, pp 217–237Google Scholar
  9. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M (2014) Carbon and other biogeochemical cycles. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 465–570Google Scholar
  10. Digital Globe (2017) Google earth. V7.2. Monday, March 23, 2017 9:31:27 PM UTC. Karukinga Park, Chile. 54° 6'3.72"S 69°21'24.09"W. http://www.earth.google.com. Accessed 15 April 2017
  11. Dukes JS, Mooney HA (2004) Disruption of ecosystem processes in western North America by invasive species. Rev Chil Hist Nat 77:411–437CrossRefGoogle Scholar
  12. Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Annu Rev Ecol Evol Syst 41:59–80Google Scholar
  13. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697CrossRefGoogle Scholar
  14. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57CrossRefGoogle Scholar
  15. Ellison D, Lundblad M, Petersson H (2011) Carbon accounting and the climate politics of forestry. Environ Sci Pol 14:1062–1078CrossRefGoogle Scholar
  16. ESRI (2010) ArcMap 10. in Institute ESR (ed) Redlands, CaliforniaGoogle Scholar
  17. ESRI (2017) ArcGIS Release 10.5.1 Environmental Systems Research Institute. Redlands, CaliforniaGoogle Scholar
  18. Gove JH, Ringvall A, Ståhl G, Ducey MJ (1999) Point relascope sampling of downed coarse woody debris. Can J For Res 29:1718–1726CrossRefGoogle Scholar
  19. Grassi G, House J, Dentener F, Federici S, den Elzen M, Penman J (2017) The key role of forests in meeting climate targets requires science for credible mitigation. Nat Clim Chang 7:220–226CrossRefGoogle Scholar
  20. Gurnell AM (1998) The hydrogeomorphological e•ects of beaver dam-building activity. Prog Phys Geogr 22:167–189Google Scholar
  21. Harris N, Hagen S, Saatchi S, Pearson T, Woodall CW, Domke GM, Braswell B, Walters BF, Brown S, Salas W (2016) Attribution of net carbon change by disturbance type across forest lands of the conterminous United States. Carbon Balance Manag 11:24CrossRefGoogle Scholar
  22. Hayer C-A, Breeggemann JJ, Klumb RA, Graeb BD, Bertrand KN (2014) Population characteristics of bighead and silver carp on the northwestern front of their North American invasion. Aquat Invasions 9:289–303CrossRefGoogle Scholar
  23. Hicke JA, Allen CD, Desai AR, Dietze MC, Hall RJ, Kashian DM, Moore D, Raffa KF, Sturrock RN, Vogelmann J (2012) Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Glob Chang Biol 18:7–34CrossRefGoogle Scholar
  24. Hobbs J, Lindesay J, Bridgman H (1998) Climates of the southern continents: past, present and future. Wiley, ChichesterGoogle Scholar
  25. Houghton R, Byers B, Nassikas AA (2015) A role for tropical forests in stabilizing atmospheric CO2. Nat Clim Chang 5:1022CrossRefGoogle Scholar
  26. Howard RJ, Larson JS (1985) A stream habitat classification system for beaver. J Wildl Manag:19–25Google Scholar
  27. IPCC (2008) Climate change 2007—mitigation of climate change. in Change IPoC (ed) Working Group III Contribution to the Fourth Assessment Report of the IPCCGoogle Scholar
  28. Jarnevich CS, Reynolds LV (2011) Challenges of predicting the potential distribution of a slow-spreading invader: a habitat suitability map for an invasive riparian tree. Biol Invasions 13:153–163CrossRefGoogle Scholar
  29. Jenkins SH, Busher PE (1979) Castor canadensis. Mamm Species:1–8Google Scholar
  30. Johnston CA (2014) Beaver pond effects on carbon storage in soils. Geoderma 213:371–378CrossRefGoogle Scholar
  31. Johnston CA (2017) The biogeochemistry of boreal beaver ponds. Beavers: boreal ecosystem engineers. Springer, Berlin, pp 177–200CrossRefGoogle Scholar
  32. Leidenberger S, Obst M, Kulawik R, Stelzer K, Heyer K, Hardisty A, Bourlat SJ (2015) Evaluating the potential of ecological niche modelling as a component in marine non-indigenous species risk assessments. Mar Pollut Bull 97:470–487CrossRefGoogle Scholar
  33. Liao C et al. (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta‐analysis. New Phytol 117(3):706–714Google Scholar
  34. Liu J, Liang SC, Liu FH, Wang RQ, Dong M (2005) Invasive alien plant species in China: regional distribution patterns. Divers Distrib 11:341–347CrossRefGoogle Scholar
  35. Lizarralde MS (1993) Current status of the introduced beaver (Castor canadensis) population in Tierra del Fuego, Argentina. Ambio 22:351–358Google Scholar
  36. Lizarralde M (2004) Invader species in Argentina: a review about the beaver (Castor canadensis) population situation on Tierra del Fuego ecosystem. Interciencia 29:352–358Google Scholar
  37. Lizarralde M, Deferrari G, Alvarez SE, Escobar JM (1996) Effects of beaver (Castor canadensis) on the nutrient dynamics of the Southern Beech forest of Tierra del Fuego (Argentina). Ecol Austral 6:101–105Google Scholar
  38. Loo JA (2009) Ecological impacts of non-indigenous invasive fungi as forest pathogens. Biol Invasions 11:81–96CrossRefGoogle Scholar
  39. McComb WC, Sedell JR, Buchholz TD (1990) Dam-site selection by beavers in an eastern Oregon basin. Great Basin Nat 3:273–281Google Scholar
  40. Mittermeier RAM, Pilgrim CG, Fonseca J, Konstant G, William R (2002) Wilderness: Earth’s last wild places. CEMEX, MéxicoGoogle Scholar
  41. Moore DJ, Trahan NA, Wilkes P, Quaife T, Stephens BB, Elder K, Desai AR, Negron J, Monson RK (2013) Persistent reduced ecosystem respiration after insect disturbance in high elevation forests. Ecol Lett 16:731–737CrossRefGoogle Scholar
  42. Naiman RJ, Johnston CA, Kelley JC (1988) Alteration of North American streams by beaver. BioScience 38:753–762CrossRefGoogle Scholar
  43. Naiman RJ, Pinay G, Johnston CA, Pastor J (1994) Beaver influences on the long-term biogeochemical characteristics of boreal forest drainage networks. Ecology 75:905–921CrossRefGoogle Scholar
  44. Nummi P, Kuuluvainen T (2013) Forest disturbance by an ecosystem engineer: beaver in boreal forest landscapes. Boreal Environ Res 18(Suppl. A):13–24Google Scholar
  45. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG (2011a) A large and persistent carbon sink in the world’s forests. Science 333:988–993CrossRefGoogle Scholar
  46. Pan Y, Chen JM, Birdsey R, McCullough K, He L, Deng F (2011b) Age structure and disturbance legacy of North American forests. Biogeosciences 8:715CrossRefGoogle Scholar
  47. Pastur GM, Lencinas MV, Escobar J, Quiroga P, Malmierca L, Lizarralde M (2006) Understorey succession in Nothofagus forests in Tierra del Fuego (Argentina) affected by Castor canadensis. Appl Veg Sci 9:143–154CrossRefGoogle Scholar
  48. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  49. Pietrek AG, Escobar J, Fasola L, Roesler I, Schiavini A (2017) Why invasive Patagonian beavers thrive in unlikely habitats: a demographic perspective. J Mammal 98:283–292Google Scholar
  50. Pisano E (1977) Fitogeografía de Fuego-Patagonia chilena. I.-Comunidades vegetales entre las latitudes 52 y 56º S. Anales del Instituto de la Patagonia.Google Scholar
  51. Poulos HM, Chernoff B, Fuller PL, Butman D (2012) Ensemble forecasting of potential habitat for three invasive fishes. Aquat Invasions 7Google Scholar
  52. R Development Core Team (2018) A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  53. Rödder D, Lötters S (2009) Niche shift versus niche conservatism? Climatic characteristics of the native and invasive ranges of the Mediterranean house gecko (Hemidactylus turcicus). Glob Ecol Biogeogr 18:674–687CrossRefGoogle Scholar
  54. Roulet NT, Crill P, Comer N, Dove A, Boubonniere R (1997) CO2 and CH4 flux between a boreal beaver pond and the atmosphere. J Geophys Res-Atmos 102:29313–29319CrossRefGoogle Scholar
  55. Running SW (2008) Ecosystem disturbance, carbon, and climate. Science 321:652–653CrossRefGoogle Scholar
  56. Saavedra B, Simonetti JA, Redford K (2011) Private conservation, the example that the Wildlife Conservation Society builds from Tierra del Fuego. Biodiversity conservation in the Americas: lessons and policy recommendations. Editorial FEN-Universidad de Chile-Besegraf Ltda, Santiago, pp 357–392Google Scholar
  57. Scanlon D, Moore T (2000) Carbon dioxide production from peatland soil profiles: the influence of temperature, oxic/anoxic conditions and substrate. Soil Sci 165:153–160CrossRefGoogle Scholar
  58. Schmidt A et al. (2009) Allometric above-belowground biomass equations for Nothofagus pumilio (Poepp. & Endl.) natural regeneration in the Chilean Patagonia. Ann For Sci 66(5):1–8Google Scholar
  59. Slough BG, Sadleir R (1977) A land capability classification system for beaver (Castor canadensis Kuhl). Can J Zool 55:1324–1335CrossRefGoogle Scholar
  60. Smith P, Clark H, Dong H, Elsiddig E, Haberl H, Harper R, House J, Jafari M, Masera O, Mbow C (2014) Agriculture, forestry and other land use (AFOLU)Google Scholar
  61. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240(4857):1285–1293Google Scholar
  62. Tapia D (2010) Cartografía de las comunidades vegetacionales del parque Karukinka utilizando imágenes de satélite Ópticas y Radar, Tesis de Grado, presentada a la Escuela de Ciencia y Tecnología en Recursos Agrícolas y Acuícolas, Facultad de Ciencias, Universidad de MagallanesGoogle Scholar
  63. Trumbore S, Brando P, Hartmann H (2015) Forest health and global change. Science 349:814–818CrossRefGoogle Scholar
  64. Tuhkanen S (1992) The climate of Tierra del Fuego from a vegetation geographical point of view and its ecoclimatic counterparts elsewhere. Acta Bot Fenn 145:64 pGoogle Scholar
  65. Turner MG (2010) Disturbance and landscape dynamics in a changing world. Ecology 91:2833–2849CrossRefGoogle Scholar
  66. Tylianakis Jason M et al. (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11(12):1351–1363Google Scholar
  67. UNFCCC (2017) The Paris Agreement - main page. [online] Available at:http://unfccc.int/paris_agreement/items/9485.php. Accessed 9 Feb 2017
  68. Updegraff K, Pastor J, Bridgham SD, Johnston CA (1995) Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands. Ecol Appl 5:151–163CrossRefGoogle Scholar
  69. Vecherskiy M, Korotaeva V, Kostina N, Dobrovol’skaya T, Umarov M (2011) Biological activities of “beaver landscape” soils. Moscow Univ Soil Sci Bull 66:175–179Google Scholar
  70. Wallem PK, Jones CG, Marquet PA, Jaksic FM (2007) Identificación de los mecanismos subyacentes a la invasión de Castor canadensis (Rodentia) en el archipiélago de Tierra del Fuego, Chile. Rev Chil Hist Nat 80:309–325CrossRefGoogle Scholar
  71. Ward DF (2007) Modelling the potential geographic distribution of invasive ant species in New Zealand. Biol Invasions 9:723–735CrossRefGoogle Scholar
  72. Wardle DA, Barker GM, Yeates GW, Bonner KI, Ghani A (2001) Introduced browsing mammals in New Zealand natural forests: aboveground and belowground consequences. Ecol Monogr 71:587–614CrossRefGoogle Scholar
  73. Wardle DA, Bellingham PJ, Fukami T, Mulder CP (2007) Promotion of ecosystem carbon sequestration by invasive predators. Biol Lett 3:479–482CrossRefGoogle Scholar
  74. Westbrook CJ, Cooper DJ, Anderson CB (2017) Alteration of hydrogeomorphic processes by invasive beavers in southern South America. Sci Total Environ 574:183–190CrossRefGoogle Scholar
  75. Whitfield CJ, Baulch HM, Chun KP, Westbrook CJ (2015) Beaver-mediated methane emission: the effects of population growth in Eurasia and the Americas. Ambio 44:7–15CrossRefGoogle Scholar
  76. Wohl E, Dwire K, Sutfin N, Polvi L, Bazan R (2012) Mechanisms of carbon storage in mountainous headwater rivers. Nat Commun 3:ncomms2274CrossRefGoogle Scholar
  77. Xu B, Pan Y, Plante AF, Johnson A, Cole J, Birdsey R (2016) Decadal change of forest biomass carbon stocks and tree demography in the Delaware River Basin. For Ecol Manag 374:1–10CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.College of the EnvironmentWesleyan UniversityMiddletownUSA
  2. 2.Wildlife Conservation SocietyPunta ArenasChile

Personalised recommendations