Advertisement

Socio-technical scenarios for energy-intensive industries: the future of steel production in Germany

  • Stefan VögeleEmail author
  • Dirk Rübbelke
  • Kristina Govorukha
  • Matthias Grajewski
Article

Abstract

Relocating energy-intensive industries to another country may help to meet national greenhouse gas reduction targets. However, this can lead to rising global emissions if production in the country that receives the shifted industries is associated with higher specific emissions (“carbon leakage”). The relocation of industries and thus the possible emergence of carbon leakage depends largely on cost advantages in the country of destination and the level of transport costs. In this study, we consider the example of relocations in the iron and steel industries of China and Germany in order to ascertain effects on CO2-emissions. We develop different scenarios for 2030 using a multilevel cross-impact-balance (CIB) approach and analyse these scenarios in a technology-based cost model. Since all scenarios show high specific cost for reducing global CO2-emissions by preferring crude steel produced in Germany to steel from China, we conclude that avoiding carbon leakage is not necessarily a cost-efficient measure for reducing global CO2-emissions.

Keywords

Carbon leakage Iron and steel industry GHG reduction Cross-impact balance 

Notes

Supplementary material

10584_2019_2366_MOESM1_ESM.docx (344 kb)
ESM 1 (DOCX 343 kb)

References

  1. Arens M, Worrell E, Schleich J (2012) Energy intensity development of the German iron and steel industry between 1991 and 2007. Energy 45:786–797.  https://doi.org/10.1016/j.energy.2012.07.012 CrossRefGoogle Scholar
  2. Arens M, Worrell E, Eichhammer W, Hasanbeigi A, Zhang Q (2017) Pathways to a low-carbon iron and steel industry in the medium-term – the case of Germany. J Clean Prod 163:84-98.  https://doi.org/10.1016/j.jclepro.2015.12.097
  3. Branger F, Sato M (2017) Solving the clinker dilemma with hybrid output-based allocation. Clim Chang 140:483–501.  https://doi.org/10.1007/s10584-016-1884-x CrossRefGoogle Scholar
  4. Branger F, Quirion P, Chevallier J (2016) Carbon leakage and competitiveness of cement and steel industries under the EU ETS: much ado about nothing. Energy J 37:109–135.  https://doi.org/10.5547/01956574.37.3.fbra Google Scholar
  5. Carlsen H, Eriksson EA, Dreborg KH, Johansson B, Bodin Ö (2016) Systematic exploration of scenario spaces. Foresight 18:59–75.  https://doi.org/10.1108/FS-02-2015-0011 CrossRefGoogle Scholar
  6. CEPS (2013) Assessment of cumulative cost impact for the steel industry. Centre for European Policy Studies, BrusselsGoogle Scholar
  7. Ecofys (2015) Carbon costs for the steel sector in Europe post-2020, UtrechtGoogle Scholar
  8. ECORYS (2013) Carbon leakage evidence project factsheets for selected sectors, RotterdamGoogle Scholar
  9. Ecofys, CEPS, Economisti Associati (2016) Composition and drivers of energy prices and costs: case studies in selected energy-intensive industries. Centre for European Policy Studies, BrusselsGoogle Scholar
  10. European Commission (2017) Growth - internal market, industry, entrepreneurships and SMEs. https://ec.europa.eu/growth/sectors/raw-materials/industries/metals/steel_en. Accessed 21/03/2017
  11. European Commission, Joint Research Centre (2013) Best available techniques (BAT) Reference Document for Iron and Steel Production. European IPPC Bureau, SevillaGoogle Scholar
  12. Fuchs G, Fahl U, Pyka A, Staber U, Vögele S, Weimer-Jehle W (2008) Generating innovation scenarios using the cross-impact methodology. Discussion-Papers Series No. 007–2008. Department of Economics, University of Bremen, BremenGoogle Scholar
  13. Godet M (1994) From anticipation to action. UNESCO, ParisGoogle Scholar
  14. Gordon TJ, Hayward H (1968) Initial experiments with the cross impact matrix method of forecasting. Futures 1:100–116.  https://doi.org/10.1016/S0016-3287(68)80003-5 CrossRefGoogle Scholar
  15. Hasanbeigi A, Morrow W, Sathaye J, Masanet E, Xu T (2013) A bottom-up model to estimate the energy efficiency improvement and CO2 emission reduction potentials in the Chinese iron and steel industry. Energy 50:315–325.  https://doi.org/10.1016/j.energy.2012.10.062 CrossRefGoogle Scholar
  16. Hasanbeigi A, Arens M, Cardenas JCR, Price L, Triolo R (2016) Comparison of carbon dioxide emissions intensity of steel production in China, Germany, Mexico, and the United States. Resour Conserv Recycl 113:127–139.  https://doi.org/10.1016/j.resconrec.2016.06.008 CrossRefGoogle Scholar
  17. Hidalgo I, Szabo L, Ciscar JC, Soria A (2005) Technological prospects and CO2 emission trading analyses in the iron and steel industry: a global model. Energy 30:583–610.  https://doi.org/10.1016/j.energy.2004.05.022 CrossRefGoogle Scholar
  18. IEA (2016) Energy technology perspectives IEA/OECD, ParisGoogle Scholar
  19. International Iron and Steel Institute (2006) Steel statistical yearbook 2006. International Iron and Steel Institute (IISI), BrusselsGoogle Scholar
  20. Jenssen T, Weimer-Jehle W (2012) More than the sum of its parts. Consistent scenarios for the consumption of heat energy as a common reference point for policy and science (in German). GAIA 21:290–299CrossRefGoogle Scholar
  21. Klepper G, Springer K (2003) Climate protection strategies: international allocation and distribution effects. Clim Chang 56:211–226.  https://doi.org/10.1023/a:1021396615753 CrossRefGoogle Scholar
  22. Kuik O, Hofkes M (2010) Border adjustment for European emissions trading: competitiveness and carbon leakage. Energy Policy 38:1741–1748.  https://doi.org/10.1016/j.enpol.2009.11.048 CrossRefGoogle Scholar
  23. Liu Z, Liu J, Wang Y (1996) Energy consumption in the iron and steel industry in P.R. China. Energy Sustain Dev 3:18–24.  https://doi.org/10.1016/S0973-0826(08)60191-X CrossRefGoogle Scholar
  24. Meylan G, Seidl R, Spoerri A (2013) Transitions of municipal solid waste management. Part I: scenarios of Swiss waste glass-packaging disposal. Resour Conserv Recycl 74:8–19.  https://doi.org/10.1016/j.resconrec.2013.02.011 CrossRefGoogle Scholar
  25. Moya JA, Boulamanti A (2016) Production costs from energy-intensive industries in the EU and third countries. Joint Research Centre, PettenGoogle Scholar
  26. Moya JA, Pardo N (2013) The potential for improvements in energy efficiency and CO2 emissions in the EU27 iron and steel industry under different payback periods. J Clean Prod 52:71–83.  https://doi.org/10.1016/j.jclepro.2013.02.028 CrossRefGoogle Scholar
  27. Oda J, Akimoto K, Sano F, Tomoda T (2007) Diffusion of energy efficient technologies and CO2 emission reductions in iron and steel sector. Energy Econ 29:868–888.  https://doi.org/10.1016/j.eneco.2007.01.003 CrossRefGoogle Scholar
  28. Oda J, Akimoto K, Tomoda T, Nagashima M, Wada K, Sano F (2012) International comparisons of energy efficiency in power, steel, and cement industries. Energy Policy 44:118–129.  https://doi.org/10.1016/j.enpol.2012.01.024 CrossRefGoogle Scholar
  29. Price L, Sinton J, Worrell E, Phylipsen D, Xiulian H, Ji L (2002) Energy use and carbon dioxide emissions from steel production in China. Energy 27:429–446.  https://doi.org/10.1016/S0360-5442(01)00095-0 CrossRefGoogle Scholar
  30. Renn O, Jäger A, Deuschle J, Weimer-Jehle W (2009) A normative-functional concept of sustainability and its indicators. Int J Global Environ Issues 9:291–317.  https://doi.org/10.1504/IJGENVI.2009.02726 CrossRefGoogle Scholar
  31. Saner D, Blumer YB, Lang DJ, Koehler A (2011) Scenarios for the implementation of EU waste legislation at national level and their consequences for emissions from municipal waste incineration. Resour Conserv Recycl 57:67–77.  https://doi.org/10.1016/j.resconrec.2011.09.002 CrossRefGoogle Scholar
  32. Schleich J (2007) Determinants of structural change and innovation in the German steel industry - an empirical investigation. Int J Publ Policy 2:109–123.  https://doi.org/10.1504/IJPP.2007.012278 CrossRefGoogle Scholar
  33. Schweizer VJ, Kriegler E (2012) Improving environmental change research with systematic techniques for qualitative scenarios. Environ Res Lett 7.  https://doi.org/10.1088/1748-9326/7/4/044011
  34. Schweizer VJ, Kurniawan JH (2016) Systematically linking qualitative elements of scenarios across levels, scales, and sectors. Environ Model Softw 79:322–333.  https://doi.org/10.1016/j.envsoft.2015.12.014 CrossRefGoogle Scholar
  35. Schweizer VJ, O’Neill BC (2014) Systematic construction of global socioeconomic pathways using internally consistent element combinations. Clim Chang 122:431–445.  https://doi.org/10.1007/s10584-013-0908-z CrossRefGoogle Scholar
  36. Serrenho AC, Mourao ZS, Norman J, Cullen JM, Allwood JM (2016) The influence of UK emissions reduction targets on the emissions of the global steel industry. Resour Conserv Recycl 107:174–184.  https://doi.org/10.1016/j.resconrec.2016.01.001 CrossRefGoogle Scholar
  37. Sundal MV, With H (2010) Dry bulk outlook: iron ore and coal. DnB Nor Markets, OsloGoogle Scholar
  38. The Boston Consulting Group/Steel Institute VDEh (2013) Steel’s contribution to a low carbon Europe 2050. BCG, BostonGoogle Scholar
  39. Vögele S, Hansen P, Poganietz W-R, Prehofer S, Weimer-Jehle W (2017a) Analysis of the energy consumption of private households in Germany using multi-level cross-impact balance approach - data. Data in Brief 10:515–517.  https://doi.org/10.1016/j.dib.2016.12.037 CrossRefGoogle Scholar
  40. Vögele S, Hansen P, Poganietz W-R, Prehofer S, Weimer-Jehle W (2017b) Building scenarios for energy consumption of private households in Germany using a multi-level cross-impact balance approach. Energy 120:937–946.  https://doi.org/10.1016/j.energy.2016.12.001 CrossRefGoogle Scholar
  41. Weimer-Jehle W (2006) Cross-impact balances: a system-theoretical approach to cross-impact analysis. Technol Forecast Soc Chang 73:334–361.  https://doi.org/10.1016/j.techfore.2005.06.005 CrossRefGoogle Scholar
  42. Weimer-Jehle W (2013) ScenarioWizard 4.1 - Programm zur qualitativen System- und Szenarioanalyse mit der Cross-Impact Bilanzanalyse (CIB) ZIRIUS - Zentrum für Interdisziplinäre Risiko- und Innovationsforschung, Universität StuttgartGoogle Scholar
  43. Weimer-Jehle W (2016) Multi-level CIB approaches. Attempt at a classification. Paper presented at the Workshop Context scenarios and multi-level CIB, June 28-29th, 2016, Karlsruhe, June 28-29th, 2016Google Scholar
  44. Weimer-Jehle W, Deuschle J, Rehaag R (2012) Familial and societal causes of juvenile obesity-a qualitative model on obesity development and prevention in socially disadvantaged children and adolescents. J Public Health (Germany) 20:111–124.  https://doi.org/10.1007/s10389-011-0473-8 CrossRefGoogle Scholar
  45. Weimer-Jehle W et al (2016) Context scenarios and their usage for the construction of socio-technical energy scenarios. Energy 111:956–970.  https://doi.org/10.1016/j.energy.2016.05.073 CrossRefGoogle Scholar
  46. Weimer-Jehle W et al. (submitted) Socio-technical scenarios – rationale and concept Climatic ChangeGoogle Scholar
  47. World Steel Association (2016a) Fact sheet: energy use in the steel industry. Worldsteel Committee on Economic Studies Brussels, BrusselsGoogle Scholar
  48. World Steel Association (2016b) World steel in figures 2016. World Steel Association, BrusselsGoogle Scholar
  49. Worrell E, Price L, Martin N (2001) Energy efficiency and carbon dioxide emissions reduction opportunities in the US iron and steel sector. Energy 26:513–536.  https://doi.org/10.1016/S0360-5442(01)00017-2 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Forschungszentrum Jülich GmbHInstitute of Energy and Climate Research - Systems Analysis and Technology Evaluation (IEK-STE)JülichGermany
  2. 2.TU Bergakademie FreibergFreibergGermany
  3. 3.FH AachenJülichGermany

Personalised recommendations