Climatic Change

, Volume 152, Issue 3–4, pp 487–502 | Cite as

Spatial modelling of summer climate indices based on local climate zones: expected changes in the future climate of Brno, Czech Republic

  • Jan GeletičEmail author
  • Michal Lehnert
  • Petr Dobrovolný
  • Maja Žuvela-Aloise


With global climate change ongoing, there is growing concern about future living conditions in urban areas. This contribution presents the modelled spatial distribution of two daytime (summer days, hot days), and two night-time (warm nights and tropical nights) summer climate indices in the recent and future climate of the urban environment of Brno, Czech Republic, within the framework of local climate zones (LCZs). The thermodynamic MUKLIMO_3 model combined with the CUBOID method is used for spatial modelling. Climate indices are calculated from measurements over three periods (1961–1990, 1971–2000 and 1981–2010). The EURO-CORDEX database for two periods (2021–2050 and 2071–2100) and three representative concentration pathway (RCP) scenarios (2.6, 4.5 and 8.5) are employed to indicate future climate. The results show that the values of summer climate indices will significantly increase in the twenty-first century. In all LCZs, the increase per RCP 8.5 scenario is substantially more pronounced than scenarios per RCP 2.6 and 4.5. Our results indicate that a higher absolute increment in the number of hot days, warm nights and tropical nights is to be expected in already warmer, densely populated midrise and/or compact developments (LCZs 2, 3 and 5) in contrast to a substantially lower increment for forested areas (LCZ A). Considering the projected growth of summer climate indices and the profound differences that exist between LCZs, this study draws urgent attention to the importance of urban planning that works towards moderating the increasing heat stress in central European cities.



Tony Long (Svinošice) helped work up the English.

Funding information

This contribution was prepared within the project “Urban climate in Central European cities and global climate change” of the International Visegrad Fund’s Standard Grant No. 21410222. The authors received support from the students’ grant project titled “Socio-economic structures and determinants of the contemporary landscape: analysis and interpretation of geographic reality” funded by the Palacký University Internal Grant Agency (IGA_PrF_2017_021). This work was supported by the Ministry of Education, Youth and Sports of CR within the National Sustainability Program I (NPU I), grant number LO1415.

Supplementary material

10584_2018_2353_MOESM1_ESM.docx (14.3 mb)
ESM 1 (DOCX 14654 kb)


  1. Alexandri E, Jones P (2008) Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Build Environ 43:480–493CrossRefGoogle Scholar
  2. Bokwa A, Dobrovolný P, Gál T, Geletič J, Gulyás A, Hajto MJ, Hollósi B, Kielar R, Lehnert M, Skarbit N, Šťastný P, Švec M, Unger J, Vysoudil M, Walawender JP, Žuvela-Aloise M (2015) Modelling the impact of climate change on heat load increase in Central European cities. In International Conference on Urban Climate (ICUC 9). Extended abstracts, 5 pGoogle Scholar
  3. Brousse O, Martilli A, Foley M, Mills G, Bechtel B (2016) WUDAPT, an efficient land use producing data tool for mesoscale models? Integration of urban LCZ in WRF over Madrid. Urban Climate 17:116–134CrossRefGoogle Scholar
  4. ČÚZK (2017) Czech Office for Surveying, mapping and cadastre (ČÚZK)—fundamental base of geographic data of the Czech Republic [cit. 2017-09-12]. Available at:
  5. Dobrovolný P, Řezníčková L, Brázdil R, Krahula L, Zahradníček P, Hradil M, Doleželová M, Šálek M, Štěpánek P, Rožnovský J (2012) Klima Brna. Víceúrovňová Analýza Městského Klimatu. 1st edn. Masarykova Univerzita: Brno, Czech Republic, 200 pGoogle Scholar
  6. Ebi K (2011) Climate change and health risks: assessing and responding to them through “adaptive management”. Health Aff 30(5):924–930CrossRefGoogle Scholar
  7. Elzafarany A, Abouelseoud T, Ashraf H, Sodoudi S (2017) Estimate of climate change impacts on urban heat island using an urban climate modelling in Desert City case study, “Greater Cairo” Egypt. In: Buchholz S, Noppel H Žuvela-Aloise M, Hollósi B (Eds.), 1st MUKLIMO_3 users workshop may 9–10, 2017 Vienna, Deutscher Wetterdienst & Zentralanstalt für Meteorologie und GeodynamikGoogle Scholar
  8. Fenner D, Meier F, Scherer D, Polze A (2014) Spatial and temporal air temperature variability in Berlin, Germany, during the years 2001–2010. Urban Climate 10:308–331CrossRefGoogle Scholar
  9. Früh B, Becker P, Deutschländer T, Hessel JD, Kossmann M, Mieskes I, Namyslo J, Roos M, Sievers U, Steigerwald T, Turau H, Wienert U (2011) Estimation of climate change impacts on the urban heat load using an urban climate model and regional climate projections. J Appl Meteorol Climatol 50(1):167–184CrossRefGoogle Scholar
  10. Geletič J, Lehnert M (2016) A GIS-based delineation of local climate zones: the case of medium-sized central European cities. Moravian Geographical Reports 24(3):2–12CrossRefGoogle Scholar
  11. Geletič J, Lehnert M, Dobrovolný P (2016) Modelled spatio-temporal variability of air temperature in an urban climate and its validation: a case study of Brno (Czech Republic). Hung Geograph Bull 65:169–180CrossRefGoogle Scholar
  12. Gill S, Handley J, Ennos A, Pauleit S (2007) Adapting cities for climate change: the role of the green infrastructure. Built Environ 3(1):115–133CrossRefGoogle Scholar
  13. Gross G (1989) Numerical simulation of the nocturnal flow systems in the Freiburg area for different topographies. Contr Atmos Phys 62:57–72Google Scholar
  14. Haines A, Kovats RS, Campbell-Lendrum D, Corvalan C (2006) Climate change and human health: impacts, vulnerability and public health. Lancet 367(9528):2101–2109CrossRefGoogle Scholar
  15. Hammerberg K, Brousse O, Martilli A, Mahdav A (2018) Implications of employing detailed urban canopy parameters for mesoscale climate modelling: a comparison between WUDAPT and GIS databases over Vienna, Austria. Int J Climatol 38(S1):1241–1257CrossRefGoogle Scholar
  16. Hong B, Chen F, Ren P (2015) Coupling numerical simulation and field experiment to optimize vegetation arrangement for pleasant outdoor wind environment in residential district. J Environ Prot 6:374–387CrossRefGoogle Scholar
  17. Hunt A, Watkiss P (2011) Climate change impacts and adaptation in cities: a review of the literature. Clim Chang 104(1):13–49CrossRefGoogle Scholar
  18. IPCC (2014a) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pGoogle Scholar
  19. IPCC (2014b) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1454 pGoogle Scholar
  20. Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer L, Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, Meijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana JF, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P (2014) EUROCORDEX: new high-resolution climate change projections for European impact research. Reg Environ Chang 14(2):563–578CrossRefGoogle Scholar
  21. Kielar R, Ostapowicz K, Bokwa A (2017) MUKLIMO_3 results verification for Kraków, Poland. In: Buchholz S, Noppel H Žuvela-Aloise M, Hollósi B (Eds.), 1st MUKLIMO_3 users workshop may 9–10, 2017 Vienna, Deutscher Wetterdienst & Zentralanstalt für Meteorologie und GeodynamikGoogle Scholar
  22. Kovats RS, Hajat S (2008) Heat stress and public health: a critical review. Annu Rev Public Health 29:41–55CrossRefGoogle Scholar
  23. Leconte F, Bouyer J, Claverie R, Pétrissans M (2015) Using local climate zone scheme for UHI assessment: evaluation of the method using mobile measurements. Build Environ 83:39–49CrossRefGoogle Scholar
  24. Leconte F, Bouyer J, Claverie R, Pétrissans M (2017) Analysis of nocturnal air temperature in districts using mobile measurements and a cooling indicator. Theor Appl Climatol 130(1–2):365–376CrossRefGoogle Scholar
  25. Lehnert M, Geletič J, Dobrovolný P, Jurek M (2018) Temperature differences among local climate zones established by mobile measurements in two central European cities. Clim Res 75(1):53–64CrossRefGoogle Scholar
  26. Lelovics E, Unger J, Gál T, Gál CV (2014) Design of an urban monitoring network based on local climate zone mapping and temperature pattern modelling. Clim Res 60(1):51–62CrossRefGoogle Scholar
  27. Lelovics E, Unger J, Savić S, Gál TM, Milosevic D, Gulyás Á, Gál C (2016) Intra-urban temperature observations in two central European cities: a summer study. Q J R Meteorol Soc 120:283–300Google Scholar
  28. Letzel MO, Krane M, Raasch S (2008) High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale. Atmos Environ 42(38):8770–8784CrossRefGoogle Scholar
  29. Lhotka O, Kyselý J, Farda A (2018) Climate change scenarios of heat waves in Central Europe and their uncertainties. Theor Appl Climatol 131(3–4):1043–1054CrossRefGoogle Scholar
  30. Masson V, Marchadier C, Adolphe L, Aguejdad R, Avner P, Bonhomme M, Bretagne G, Briottet X, Bueno B, de Munck C, Doukari O, Hallegatte S, Hidalgo J, Houet T, Le Bras J, Lemonsu A, Long N, Moine M-P, Morel T, Nolorgues L, Pigeon G, Salagnac J-L, Viguié V, Zibouche K (2014) Adapting cities to climate change: a systemic modelling approach. Urban Climate 10:407–429CrossRefGoogle Scholar
  31. Müller N, Kuttler W, Barlag AB (2013) Counteracting urban climate change: adaptation measures and their effect on thermal comfort. Theor Appl Climatol 115:243–257CrossRefGoogle Scholar
  32. NASA Jet propulsion laboratory (JPL) (2017) NASA shuttle radar topography Mission United States 1 arc second. Version 3. NASA EOSDIS land processes DAAC, USGS earth resources observation and science (EROS) center, Sioux Falls, South Dakota Accessed March 16, 2017Google Scholar
  33. Ng E (2009) Policies and technical guidelines for urban planning of high-density cities–air ventilation assessment (AVA) of Hong Kong. Build Environ 44:1478–1488CrossRefGoogle Scholar
  34. Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438(7066):310–317CrossRefGoogle Scholar
  35. Quanz JA, Ulrich S, Fenner D, Holtmann A, Eimermacher J (2018) Micro-scale variability of air temperature within a local climate zone in Berlin, Germany, during summer. Climate 6(1):5CrossRefGoogle Scholar
  36. Ren C, Fung JCH, Tse WP, Wang R, Wong MF, Xu Y (2017) Implementing WUDAPT product into urban development impact analysis by using WRF simulation result – a case study of the Pearl River Delta Region (1980–2010). The 9th American Meteorological Society Annual Meeting 2017 (AMS2017), Seattle, US, 22–26 January 2017Google Scholar
  37. Resler J, Krč P, Belda M, Juruš P, Benešová N, Lopata J, Vlček O, Damašková D, Eben K, Derbek P, Maronga B, Kanani-Sühring F (2017) PALM-USM v1.0: a new urban surface model integrated into the PALM large-eddy simulation model. Geosci Model Dev 10:3635–3659CrossRefGoogle Scholar
  38. Siebert J, Sievers U, Zdunkowski W (1992) A one-dimensional simulation of the interaction between land surface processes and the atmosphere. Boundary-Layer Meteorol 59:1):1–1)34CrossRefGoogle Scholar
  39. Sievers U (1995) Verallgemeinerung der Strom-funktionsmethode auf drei Dimensionen. Meteorol Z 4(1):3–15CrossRefGoogle Scholar
  40. Sievers U (2012) Das kleinskalige Strömungsmodell MUKLIMO. Teil 1: Theoretische Grundlagen, PC-Basisversion und Validierung. Offenbach am Main, Berichte des Deutscher Wetterdienst. 136 pGoogle Scholar
  41. Sievers U, Zdunskowski W (1985) A numerical simulation scheme for the albedo of city street canyons. Boundary-Layer Meteorol 33(3):245–257CrossRefGoogle Scholar
  42. Sievers U, Zdunkowski W (1986) A microscale urban climate model. Beitr Phys Atmos 59:13–19Google Scholar
  43. Sievers U, Früh B (2012) A practical approach to compute short-wave irradiance interacting with subgrid-scale buildings. Meteorol Z 21(4):349–364CrossRefGoogle Scholar
  44. Sievers U, Forkel R, Zdunkowski W (1983) Transport equations for heat and moisture in the soil and their application to boundary layer problems. Contributions Atmos Phys 56:58–83Google Scholar
  45. Skalák P, Žák M, Zahradníček P, Helman K (2015) Příspěvek projektu UHI k poznání klimatu Prahy. Meteorologické Zprávy 68(1):18–23Google Scholar
  46. Skarbit N, Gál T (2016) Projection of intra-urban modification of night-time climate indices during the 21st century. Hungarian Geogr Bull 65(2):181–193CrossRefGoogle Scholar
  47. Skarbit N, Stewart ID, Unger J, Gál T (2017) Employing an urban meteorological network to monitor air temperature conditions in the ‘local climate zones’ of Szeged, Hungary. Int J Climatol 37(S1):582–596CrossRefGoogle Scholar
  48. Stewart ID, Oke TR (2012) Local climate zones for urban temperature studies. Bull Am Meteorol Soc 93(12):1879–1900CrossRefGoogle Scholar
  49. Stewart ID, Oke TR, Krayenhoff ES (2014) Evaluation of the ‘local climate zone’ scheme using temperature observations and model simulations. Int J Climatol 34:1062–1080CrossRefGoogle Scholar
  50. Štěpánek P, Zahradníček P, Farda A, Skalák P, Trnka M, Meitner J, Rajdl K (2016) Projection of drought-inducing climate conditions in the Czech Republic according to Euro-CORDEX models. Clim Res 70:179–193CrossRefGoogle Scholar
  51. Tsin PK, Knudby A, Krayenhoff ES, Ho HC, Brauer M, Henderson SB (2016) Microscale mobile monitoring of urban air temperature. Urban Climate 18:58–72CrossRefGoogle Scholar
  52. Unger J, Savić S, Gál TM, Milošević D, Kosztolányi É, Marković V (2014) Urban climate and monitoring network system in Central European cities. University of Novi Sad, Faculty of Sciences and University of Szeged, Department of Climatology and Landscape Ecology, Novi Sad, Serbia, 112 pGoogle Scholar
  53. Verdonck ML, Demuzere M, Hooyberghs H, Beck C, Cyrys J, Schneider A, Dewulf R, Van Coillie F (2018) The potential of local climate zones maps as a heat stress assessment tool, supported by simulated air temperature data. Landsc Urban Plan 178:183–197CrossRefGoogle Scholar
  54. Willmott CJ (1981) On the validation of models. Phys Geogr 2:184–194CrossRefGoogle Scholar
  55. Willmott CJ, Robeson SM, Matsuura K (2012) A refined index of model performance. Int J Climatol 32(13):2088–2094CrossRefGoogle Scholar
  56. Yahia MW, Johansson E, Thorsson S, Lindberg F, Rasmussen MI (2018) Effect of urban design on microclimate and thermal comfort outdoors in warm-humid Dar es Salaam, Tanzania. Int J Biometeorol 62:373CrossRefGoogle Scholar
  57. Zanobetti A, O’Neill MS, Gronlund CJ, Schwartz JD (2012) Summer temperature variability and long-term survival among elderly people with chronic disease. P Natl Acad Sci USA 109(17):6608–6613CrossRefGoogle Scholar
  58. Zhang X, Alexander L, Hegerl GC, Jones P, Tank AK, Peterson TC, Trevin B, Zwiers FW (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip Rev Clim Chang 2(6):851–870CrossRefGoogle Scholar
  59. Žuvela-Aloise M, Koch R, Neureiter A, Böhm R, Buchholz S (2014) Reconstructing urban climate of Vienna based on historical maps dating to the early instrumental period. Urban Climate 10(3):490–508CrossRefGoogle Scholar
  60. Žuvela-Aloise M, Koch R, Buchholz S, Früh B (2016) Modelling the potential of green and blue infrastructure to reduce urban heat load in the city of Vienna. Clim Chang 135(3):425–438CrossRefGoogle Scholar
  61. Žuvela-Aloise M (2017) Enhancement of urban heat load through social inequalities on an example of a fictional city King’s Landing. Int J Biometeorol 61(3):527–539CrossRefGoogle Scholar
  62. Žuvela-Aloise M, Andre K, Schwaiger H, Bird DN, Gallaun H (2018) Modelling reduction of urban heat load in Vienna by modifying surface properties of roofs. Theor Appl Climatol 131(3–4):1005–1018CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Complex SystemsInstitute of Computer Science of the Czech Academy of SciencesPrague 8Czech Republic
  2. 2.Global Change Research Institute of the Czech Academy of SciencesBrnoCzech Republic
  3. 3.Department of Geography, Faculty of SciencePalacký UniversityOlomoucCzech Republic
  4. 4.Department of Geography, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  5. 5.Zentralanstalt für Meteorologie und GeodynamikViennaAustria

Personalised recommendations