Skip to main content

Advertisement

Log in

Spatial modelling of summer climate indices based on local climate zones: expected changes in the future climate of Brno, Czech Republic

Climatic Change Aims and scope Submit manuscript

Abstract

With global climate change ongoing, there is growing concern about future living conditions in urban areas. This contribution presents the modelled spatial distribution of two daytime (summer days, hot days), and two night-time (warm nights and tropical nights) summer climate indices in the recent and future climate of the urban environment of Brno, Czech Republic, within the framework of local climate zones (LCZs). The thermodynamic MUKLIMO_3 model combined with the CUBOID method is used for spatial modelling. Climate indices are calculated from measurements over three periods (1961–1990, 1971–2000 and 1981–2010). The EURO-CORDEX database for two periods (2021–2050 and 2071–2100) and three representative concentration pathway (RCP) scenarios (2.6, 4.5 and 8.5) are employed to indicate future climate. The results show that the values of summer climate indices will significantly increase in the twenty-first century. In all LCZs, the increase per RCP 8.5 scenario is substantially more pronounced than scenarios per RCP 2.6 and 4.5. Our results indicate that a higher absolute increment in the number of hot days, warm nights and tropical nights is to be expected in already warmer, densely populated midrise and/or compact developments (LCZs 2, 3 and 5) in contrast to a substantially lower increment for forested areas (LCZ A). Considering the projected growth of summer climate indices and the profound differences that exist between LCZs, this study draws urgent attention to the importance of urban planning that works towards moderating the increasing heat stress in central European cities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Alexandri E, Jones P (2008) Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Build Environ 43:480–493

    Article  Google Scholar 

  • Bokwa A, Dobrovolný P, Gál T, Geletič J, Gulyás A, Hajto MJ, Hollósi B, Kielar R, Lehnert M, Skarbit N, Šťastný P, Švec M, Unger J, Vysoudil M, Walawender JP, Žuvela-Aloise M (2015) Modelling the impact of climate change on heat load increase in Central European cities. In International Conference on Urban Climate (ICUC 9). Extended abstracts, 5 p

  • Brousse O, Martilli A, Foley M, Mills G, Bechtel B (2016) WUDAPT, an efficient land use producing data tool for mesoscale models? Integration of urban LCZ in WRF over Madrid. Urban Climate 17:116–134

    Article  Google Scholar 

  • ČÚZK (2017) Czech Office for Surveying, mapping and cadastre (ČÚZK)—fundamental base of geographic data of the Czech Republic [cit. 2017-09-12]. Available at: http://www.cuzk.cz/

  • Dobrovolný P, Řezníčková L, Brázdil R, Krahula L, Zahradníček P, Hradil M, Doleželová M, Šálek M, Štěpánek P, Rožnovský J (2012) Klima Brna. Víceúrovňová Analýza Městského Klimatu. 1st edn. Masarykova Univerzita: Brno, Czech Republic, 200 p

  • Ebi K (2011) Climate change and health risks: assessing and responding to them through “adaptive management”. Health Aff 30(5):924–930

    Article  Google Scholar 

  • Elzafarany A, Abouelseoud T, Ashraf H, Sodoudi S (2017) Estimate of climate change impacts on urban heat island using an urban climate modelling in Desert City case study, “Greater Cairo” Egypt. In: Buchholz S, Noppel H Žuvela-Aloise M, Hollósi B (Eds.), 1st MUKLIMO_3 users workshop may 9–10, 2017 Vienna, Deutscher Wetterdienst & Zentralanstalt für Meteorologie und Geodynamik

  • Fenner D, Meier F, Scherer D, Polze A (2014) Spatial and temporal air temperature variability in Berlin, Germany, during the years 2001–2010. Urban Climate 10:308–331

    Article  Google Scholar 

  • Früh B, Becker P, Deutschländer T, Hessel JD, Kossmann M, Mieskes I, Namyslo J, Roos M, Sievers U, Steigerwald T, Turau H, Wienert U (2011) Estimation of climate change impacts on the urban heat load using an urban climate model and regional climate projections. J Appl Meteorol Climatol 50(1):167–184

    Article  Google Scholar 

  • Geletič J, Lehnert M (2016) A GIS-based delineation of local climate zones: the case of medium-sized central European cities. Moravian Geographical Reports 24(3):2–12

    Article  Google Scholar 

  • Geletič J, Lehnert M, Dobrovolný P (2016) Modelled spatio-temporal variability of air temperature in an urban climate and its validation: a case study of Brno (Czech Republic). Hung Geograph Bull 65:169–180

    Article  Google Scholar 

  • Gill S, Handley J, Ennos A, Pauleit S (2007) Adapting cities for climate change: the role of the green infrastructure. Built Environ 3(1):115–133

    Article  Google Scholar 

  • Gross G (1989) Numerical simulation of the nocturnal flow systems in the Freiburg area for different topographies. Contr Atmos Phys 62:57–72

    Google Scholar 

  • Haines A, Kovats RS, Campbell-Lendrum D, Corvalan C (2006) Climate change and human health: impacts, vulnerability and public health. Lancet 367(9528):2101–2109

    Article  Google Scholar 

  • Hammerberg K, Brousse O, Martilli A, Mahdav A (2018) Implications of employing detailed urban canopy parameters for mesoscale climate modelling: a comparison between WUDAPT and GIS databases over Vienna, Austria. Int J Climatol 38(S1):1241–1257

    Article  Google Scholar 

  • Hong B, Chen F, Ren P (2015) Coupling numerical simulation and field experiment to optimize vegetation arrangement for pleasant outdoor wind environment in residential district. J Environ Prot 6:374–387

    Article  Google Scholar 

  • Hunt A, Watkiss P (2011) Climate change impacts and adaptation in cities: a review of the literature. Clim Chang 104(1):13–49

    Article  Google Scholar 

  • IPCC (2014a) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 p

  • IPCC (2014b) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1454 p

  • Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer L, Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, Meijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana JF, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P (2014) EUROCORDEX: new high-resolution climate change projections for European impact research. Reg Environ Chang 14(2):563–578

    Article  Google Scholar 

  • Kielar R, Ostapowicz K, Bokwa A (2017) MUKLIMO_3 results verification for Kraków, Poland. In: Buchholz S, Noppel H Žuvela-Aloise M, Hollósi B (Eds.), 1st MUKLIMO_3 users workshop may 9–10, 2017 Vienna, Deutscher Wetterdienst & Zentralanstalt für Meteorologie und Geodynamik

  • Kovats RS, Hajat S (2008) Heat stress and public health: a critical review. Annu Rev Public Health 29:41–55

    Article  Google Scholar 

  • Leconte F, Bouyer J, Claverie R, Pétrissans M (2015) Using local climate zone scheme for UHI assessment: evaluation of the method using mobile measurements. Build Environ 83:39–49

    Article  Google Scholar 

  • Leconte F, Bouyer J, Claverie R, Pétrissans M (2017) Analysis of nocturnal air temperature in districts using mobile measurements and a cooling indicator. Theor Appl Climatol 130(1–2):365–376

    Article  Google Scholar 

  • Lehnert M, Geletič J, Dobrovolný P, Jurek M (2018) Temperature differences among local climate zones established by mobile measurements in two central European cities. Clim Res 75(1):53–64

    Article  Google Scholar 

  • Lelovics E, Unger J, Gál T, Gál CV (2014) Design of an urban monitoring network based on local climate zone mapping and temperature pattern modelling. Clim Res 60(1):51–62

    Article  Google Scholar 

  • Lelovics E, Unger J, Savić S, Gál TM, Milosevic D, Gulyás Á, Gál C (2016) Intra-urban temperature observations in two central European cities: a summer study. Q J R Meteorol Soc 120:283–300

    Google Scholar 

  • Letzel MO, Krane M, Raasch S (2008) High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale. Atmos Environ 42(38):8770–8784

    Article  Google Scholar 

  • Lhotka O, Kyselý J, Farda A (2018) Climate change scenarios of heat waves in Central Europe and their uncertainties. Theor Appl Climatol 131(3–4):1043–1054

    Article  Google Scholar 

  • Masson V, Marchadier C, Adolphe L, Aguejdad R, Avner P, Bonhomme M, Bretagne G, Briottet X, Bueno B, de Munck C, Doukari O, Hallegatte S, Hidalgo J, Houet T, Le Bras J, Lemonsu A, Long N, Moine M-P, Morel T, Nolorgues L, Pigeon G, Salagnac J-L, Viguié V, Zibouche K (2014) Adapting cities to climate change: a systemic modelling approach. Urban Climate 10:407–429

    Article  Google Scholar 

  • Müller N, Kuttler W, Barlag AB (2013) Counteracting urban climate change: adaptation measures and their effect on thermal comfort. Theor Appl Climatol 115:243–257

    Article  Google Scholar 

  • NASA Jet propulsion laboratory (JPL) (2017) NASA shuttle radar topography Mission United States 1 arc second. Version 3. NASA EOSDIS land processes DAAC, USGS earth resources observation and science (EROS) center, Sioux Falls, South Dakota Accessed March 16, 2017

  • Ng E (2009) Policies and technical guidelines for urban planning of high-density cities–air ventilation assessment (AVA) of Hong Kong. Build Environ 44:1478–1488

    Article  Google Scholar 

  • Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438(7066):310–317

    Article  Google Scholar 

  • Quanz JA, Ulrich S, Fenner D, Holtmann A, Eimermacher J (2018) Micro-scale variability of air temperature within a local climate zone in Berlin, Germany, during summer. Climate 6(1):5

    Article  Google Scholar 

  • Ren C, Fung JCH, Tse WP, Wang R, Wong MF, Xu Y (2017) Implementing WUDAPT product into urban development impact analysis by using WRF simulation result – a case study of the Pearl River Delta Region (1980–2010). The 9th American Meteorological Society Annual Meeting 2017 (AMS2017), Seattle, US, 22–26 January 2017

  • Resler J, Krč P, Belda M, Juruš P, Benešová N, Lopata J, Vlček O, Damašková D, Eben K, Derbek P, Maronga B, Kanani-Sühring F (2017) PALM-USM v1.0: a new urban surface model integrated into the PALM large-eddy simulation model. Geosci Model Dev 10:3635–3659

    Article  Google Scholar 

  • Siebert J, Sievers U, Zdunkowski W (1992) A one-dimensional simulation of the interaction between land surface processes and the atmosphere. Boundary-Layer Meteorol 59:1):1–1)34

    Article  Google Scholar 

  • Sievers U (1995) Verallgemeinerung der Strom-funktionsmethode auf drei Dimensionen. Meteorol Z 4(1):3–15

    Article  Google Scholar 

  • Sievers U (2012) Das kleinskalige Strömungsmodell MUKLIMO. Teil 1: Theoretische Grundlagen, PC-Basisversion und Validierung. Offenbach am Main, Berichte des Deutscher Wetterdienst. 136 p

  • Sievers U, Zdunskowski W (1985) A numerical simulation scheme for the albedo of city street canyons. Boundary-Layer Meteorol 33(3):245–257

    Article  Google Scholar 

  • Sievers U, Zdunkowski W (1986) A microscale urban climate model. Beitr Phys Atmos 59:13–19

    Google Scholar 

  • Sievers U, Früh B (2012) A practical approach to compute short-wave irradiance interacting with subgrid-scale buildings. Meteorol Z 21(4):349–364

    Article  Google Scholar 

  • Sievers U, Forkel R, Zdunkowski W (1983) Transport equations for heat and moisture in the soil and their application to boundary layer problems. Contributions Atmos Phys 56:58–83

    Google Scholar 

  • Skalák P, Žák M, Zahradníček P, Helman K (2015) Příspěvek projektu UHI k poznání klimatu Prahy. Meteorologické Zprávy 68(1):18–23

    Google Scholar 

  • Skarbit N, Gál T (2016) Projection of intra-urban modification of night-time climate indices during the 21st century. Hungarian Geogr Bull 65(2):181–193

    Article  Google Scholar 

  • Skarbit N, Stewart ID, Unger J, Gál T (2017) Employing an urban meteorological network to monitor air temperature conditions in the ‘local climate zones’ of Szeged, Hungary. Int J Climatol 37(S1):582–596

    Article  Google Scholar 

  • Stewart ID, Oke TR (2012) Local climate zones for urban temperature studies. Bull Am Meteorol Soc 93(12):1879–1900

    Article  Google Scholar 

  • Stewart ID, Oke TR, Krayenhoff ES (2014) Evaluation of the ‘local climate zone’ scheme using temperature observations and model simulations. Int J Climatol 34:1062–1080

    Article  Google Scholar 

  • Štěpánek P, Zahradníček P, Farda A, Skalák P, Trnka M, Meitner J, Rajdl K (2016) Projection of drought-inducing climate conditions in the Czech Republic according to Euro-CORDEX models. Clim Res 70:179–193

    Article  Google Scholar 

  • Tsin PK, Knudby A, Krayenhoff ES, Ho HC, Brauer M, Henderson SB (2016) Microscale mobile monitoring of urban air temperature. Urban Climate 18:58–72

    Article  Google Scholar 

  • Unger J, Savić S, Gál TM, Milošević D, Kosztolányi É, Marković V (2014) Urban climate and monitoring network system in Central European cities. University of Novi Sad, Faculty of Sciences and University of Szeged, Department of Climatology and Landscape Ecology, Novi Sad, Serbia, 112 p

  • Verdonck ML, Demuzere M, Hooyberghs H, Beck C, Cyrys J, Schneider A, Dewulf R, Van Coillie F (2018) The potential of local climate zones maps as a heat stress assessment tool, supported by simulated air temperature data. Landsc Urban Plan 178:183–197

    Article  Google Scholar 

  • Willmott CJ (1981) On the validation of models. Phys Geogr 2:184–194

    Article  Google Scholar 

  • Willmott CJ, Robeson SM, Matsuura K (2012) A refined index of model performance. Int J Climatol 32(13):2088–2094

    Article  Google Scholar 

  • Yahia MW, Johansson E, Thorsson S, Lindberg F, Rasmussen MI (2018) Effect of urban design on microclimate and thermal comfort outdoors in warm-humid Dar es Salaam, Tanzania. Int J Biometeorol 62:373

    Article  Google Scholar 

  • Zanobetti A, O’Neill MS, Gronlund CJ, Schwartz JD (2012) Summer temperature variability and long-term survival among elderly people with chronic disease. P Natl Acad Sci USA 109(17):6608–6613

    Article  Google Scholar 

  • Zhang X, Alexander L, Hegerl GC, Jones P, Tank AK, Peterson TC, Trevin B, Zwiers FW (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip Rev Clim Chang 2(6):851–870

    Article  Google Scholar 

  • Žuvela-Aloise M, Koch R, Neureiter A, Böhm R, Buchholz S (2014) Reconstructing urban climate of Vienna based on historical maps dating to the early instrumental period. Urban Climate 10(3):490–508

    Article  Google Scholar 

  • Žuvela-Aloise M, Koch R, Buchholz S, Früh B (2016) Modelling the potential of green and blue infrastructure to reduce urban heat load in the city of Vienna. Clim Chang 135(3):425–438

    Article  Google Scholar 

  • Žuvela-Aloise M (2017) Enhancement of urban heat load through social inequalities on an example of a fictional city King’s Landing. Int J Biometeorol 61(3):527–539

    Article  Google Scholar 

  • Žuvela-Aloise M, Andre K, Schwaiger H, Bird DN, Gallaun H (2018) Modelling reduction of urban heat load in Vienna by modifying surface properties of roofs. Theor Appl Climatol 131(3–4):1005–1018

    Article  Google Scholar 

Download references

Acknowledgements

Tony Long (Svinošice) helped work up the English.

Funding

This contribution was prepared within the project “Urban climate in Central European cities and global climate change” of the International Visegrad Fund’s Standard Grant No. 21410222. The authors received support from the students’ grant project titled “Socio-economic structures and determinants of the contemporary landscape: analysis and interpretation of geographic reality” funded by the Palacký University Internal Grant Agency (IGA_PrF_2017_021). This work was supported by the Ministry of Education, Youth and Sports of CR within the National Sustainability Program I (NPU I), grant number LO1415.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Geletič.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14654 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geletič, J., Lehnert, M., Dobrovolný, P. et al. Spatial modelling of summer climate indices based on local climate zones: expected changes in the future climate of Brno, Czech Republic. Climatic Change 152, 487–502 (2019). https://doi.org/10.1007/s10584-018-2353-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-018-2353-5

Navigation