Advertisement

Climatic Change

, Volume 151, Issue 3–4, pp 413–426 | Cite as

Regionalisation of population growth projections in coastal exposure analysis

  • Jan-Ludolf Merkens
  • Daniel Lincke
  • Jochen Hinkel
  • Sally Brown
  • Athanasios Thomas Vafeidis
Article

Abstract

Large-area coastal exposure and impact analysis has focussed on using sea-level rise (SLR) scenarios and has placed little emphasis on socioeconomic scenarios, while neglecting spatial variations of population dynamics. We use the Dynamic Interactive Vulnerability Assessment (DIVA) Framework to assess the population exposed to 1 in 100-year coastal flood events under different population scenarios, that are consistent with the shared socioeconomic pathways (SSPs); and different SLR scenarios, derived from the representative concentration pathways (RCPs); and analyse the effect of accounting for regionalised population dynamics on population exposure until 2100. In a reference approach, we use homogeneous population growth on national level. In the regionalisation approaches, we test existing spatially explicit projections that also account for urbanisation, coastal migration and urban sprawl. Our results show that projected global exposure in 2100 ranges from 100 million to 260 million, depending on the combination of SLR and population scenarios and method used for regionalising the population projections. The assessed exposure based on the regionalised approaches is higher than that derived from the reference approach by up to 60 million people (39%). Accounting for urbanisation and coastal migration leads to an increase in exposure, whereas considering urban sprawl leads to lower exposure. Differences between the reference and the regionalised approaches increase with higher SLR. The regionalised approaches show highest exposure under SSP5 over most of the twenty-first century, although total population in SSP5 is the second lowest overall. All methods project the largest absolute growth in exposure for Asia and relative growth for Africa.

Notes

Acknowledgments

The authors would like to express their thanks to the editor and the reviewers for their valuable comments. We would also like to thank Maureen Tsakiris for illustrating Fig. 1.

Supplementary material

10584_2018_2334_MOESM1_ESM.docx (4.5 mb)
ESM 1 (DOCX 4644 kb)

References

  1. Arnell NW, Livermore M, Kovats S, Levy PE, Nicholls R, Parry ML, Gaffin SR (2004) Climate and socio-economic scenarios for global-scale climate change impacts assessments: Characterising the SRES storylines. Glob Environ Chang 14(1):3–20CrossRefGoogle Scholar
  2. Arns A, Dangendorf S, Jensen J, Talke S, Bender J, Pattiaratchi C (2017) Sea-level rise induced amplification of coastal protection design heights. Sci Rep 7:40171CrossRefGoogle Scholar
  3. Balk DL, Deichmann U, Yetman G, Pozzi F, Hay SI, Nelson A (2006) Determining global population distribution: methods, applications and data. In: Meltzer MI (ed) Global mapping of infectious diseases: methods, examples and emerging applications, vol 62. Advances in parasitology. Elsevier, Amsterdam, pp 119–156CrossRefGoogle Scholar
  4. Brown S, Nicholls RJ, Woodroffe CD, Hanson S, Hinkel J, Kebede AS, Neumann B, Vafeidis AT (2013) Sea-level rise impacts and responses: a global perspective. In: Finkl CW (ed) Coastal Hazards, vol 1000. Coastal Research Library. Springer Netherlands, Dordrecht, pp 117–149CrossRefGoogle Scholar
  5. Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P (eds) Climate change 2013: the physical science basis: contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1137–1216Google Scholar
  6. CIESIN (Center for International Earth Science Information Network - Columbia University), IFPRI (International Food Policy Research Institute), (The World Bank), CIAT (Centro Internacional de Agricultura Tropical) (2011a) Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): Population Count Grid. NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NYGoogle Scholar
  7. CIESIN (Center for International Earth Science Information Network - Columbia University), IFPRI (International Food Policy Research Institute), (The World Bank), CIAT (Centro Internacional de Agricultura Tropical) (2011b) Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): Urban Extents Grid. NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NYGoogle Scholar
  8. Engström K, Olin S, Rounsevell MDA, Brogaard S, van Vuuren DP, Alexander P, Murray-Rust D, Arneth A (2016) Assessing uncertainties in global cropland futures using a conditional probabilistic modelling framework. Earth Syst Dynam 7(4):893–915CrossRefGoogle Scholar
  9. Gaffin SR, Rosenzweig C, Xing X, Yetman G (2004) Downscaling and geo-spatial gridding of socio-economic projections from the IPCC special report on emissions scenarios (SRES). Glob Environ Chang 14(2):105–123CrossRefGoogle Scholar
  10. Gao J (2017) Downscaling global spatial projections from 1/8-degree to 1-km grid cells. NCAR Technical Note NCAR/TN-537+STRGoogle Scholar
  11. Grübler A, O'Neill B, Riahi K, Chirkov V, Goujon A, Kolp P, Prommer I, Scherbov S, Slentoe E (2007) Regional, national, and spatially explicit scenarios of demographic and economic change based on SRES. Technol Forecast Soc Chang 74(7):980–1029CrossRefGoogle Scholar
  12. Hallegatte S, Green C, Nicholls RJ, Corfee-Morlot J (2013) Future flood losses in major coastal cities. Nat Clim Chang 3(9):802–806CrossRefGoogle Scholar
  13. Hanson S, Nicholls R, Ranger N, Hallegatte S, Corfee-Morlot J, Herweijer C, Chateau J (2011) A global ranking of port cities with high exposure to climate extremes. Clim Chang 104(1):89–111CrossRefGoogle Scholar
  14. Hinkel J, Brown S, Exner L, Nicholls RJ, Vafeidis AT, Kebede AS (2012) Sea-level rise impacts on Africa and the effects of mitigation and adaptation: an application of DIVA. Reg Environ Chang 12(1):207–224CrossRefGoogle Scholar
  15. Hinkel J, Lincke D, Vafeidis AT, Perrette M, Nicholls RJ, Tol RSJ, Marzeion B, Fettweis X, Ionescu C, Levermann A (2014) Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc Natl Acad Sci U S A 111(9):3292–3297CrossRefGoogle Scholar
  16. Hinkel J, Nicholls RJ, Tol RS, Wang ZB, Hamilton JM, Boot G, Vafeidis AT, McFadden L, Ganopolski A, Klein RJ (2013) A global analysis of erosion of sandy beaches and sea-level rise: an application of DIVA. Glob Planet Chang 111:150–158CrossRefGoogle Scholar
  17. Hinkel J, Nicholls RJ, Vafeidis AT, Tol RS, Avagianou T (2010) Assessing risk of and adaptation to sea-level rise in the European Union: an application of DIVA. Mitig Adapt Strateg Glob Change 15(7):703–719CrossRefGoogle Scholar
  18. Hoornweg D, Pope K (2016) Population predictions for the world’s largest cities in the 21st century. Environ UrbanGoogle Scholar
  19. Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe Version 4: Available from the CGIAR-CSI SRTM 90m Database. http://srtm.csi.cgiar.org
  20. Jiang L, O’Neill BC (2017) Global urbanization projections for the shared socioeconomic pathways. Glob Environ Chang 42:193–199CrossRefGoogle Scholar
  21. Jones B, O’Neill BC (2016) Spatially explicit global population scenarios consistent with the shared socioeconomic pathways. Environ Res Lett 11(8):84003CrossRefGoogle Scholar
  22. Jongman B, Ward PJ, Aerts JC (2012) Global exposure to river and coastal flooding: long term trends and changes. Glob Environ Chang 22(4):823–835CrossRefGoogle Scholar
  23. KC S, Lutz W (2017) The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob Environ Chang 42:181–192CrossRefGoogle Scholar
  24. Kummu M, de Moel H, Salvucci G, Viviroli D, Ward PJ, Varis O (2016) Over the hills and further away from coast: global geospatial patterns of human and environment over the 20th–21st centuries. Environ Res Lett 11(3):34010CrossRefGoogle Scholar
  25. Lichter M, Vafeidis AT, Nicholls RJ, Kaiser G (2011) Exploring data-related uncertainties in analyses of land area and population in the “low-elevation coastal zone” (LECZ). J Coast Res 274:757–768CrossRefGoogle Scholar
  26. McGranahan G, Balk D, Anderson B (2007) The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ Urban 19(1):17–37CrossRefGoogle Scholar
  27. Merkens J-L, Reimann L, Hinkel J, Vafeidis AT (2016) Gridded population projections for the coastal zone under the shared socioeconomic pathways. Glob Planet Chang 145:57–66CrossRefGoogle Scholar
  28. Merkens J-L, Vafeidis A (2018) Using information on settlement patterns to improve the spatial distribution of population in coastal impact assessments. Sustainability 10(9):3170CrossRefGoogle Scholar
  29. Mondal P, Tatem AJ (2012) Uncertainties in measuring populations potentially impacted by sea level rise and coastal flooding. PLoS One 7(10):e48191CrossRefGoogle Scholar
  30. Muis S, Verlaan M, Winsemius HC, Aerts JCJH, Ward PJ (2016) A global reanalysis of storm surges and extreme sea levels. Nat Commun 7:11969CrossRefGoogle Scholar
  31. Muis S, Verlaan M, Nicholls RJ, Brown S, Hinkel J, Lincke D, Vafeidis AT, Scussolini P, Winsemius HC, Ward PJ (2017) A comparison of two global datasets of extreme sea levels and resulting flood exposure. Earth's Future 5(4):379–392CrossRefGoogle Scholar
  32. Neumann B, Vafeidis AT, Zimmermann J, Nicholls RJ (2015) Future coastal population growth and exposure to sea-level rise and coastal flooding--a global assessment. PLoS One 10(3):e0118571CrossRefGoogle Scholar
  33. Nicholls RJ (2004) Coastal flooding and wetland loss in the 21st century: changes under the SRES climate and socio-economic scenarios. Glob Environ Chang 14(1):69–86CrossRefGoogle Scholar
  34. Nicholls RJ, Mimura N (1998) Regional issues raised by sea-level rise and their policy implications. Clim Res 11:5–18CrossRefGoogle Scholar
  35. Nicholls RJ, Wong PP, Burkett V, Woodroffe CD, Hay J (2008) Climate change and coastal vulnerability assessment: scenarios for integrated assessment. Sustain Sci 3(1):89–102CrossRefGoogle Scholar
  36. O’Neill BC, Kriegler E, Ebi KL, Kemp-Benedict E, Riahi K, Rothman DS, Ruijven v, van Vuuren DP, Birkmann J, Kok K, Levy M, Solecki W (2017) The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob Environ Chang 42:169–180CrossRefGoogle Scholar
  37. Poulter B, Halpin PN (2008) Raster modelling of coastal flooding from sea-level rise. Int J Geogr Inf Sci 22(2):167–182CrossRefGoogle Scholar
  38. Prather M, Flato G, Friedlingstein P, Jones C, Lamarque J-F, Liao H, Rasch P (2014) Annex II: climate system scenario tables. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P (eds) Climate change 2013: the physical science basis: contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  39. Seto KC (2011) Exploring the dynamics of migration to mega-delta cities in Asia and Africa: contemporary drivers and future scenarios. Glob Environ Chang 21:S94–S107CrossRefGoogle Scholar
  40. Spencer T, Schuerch M, Nicholls RJ, Hinkel J, Lincke D, Vafeidis AT, Reef R, McFadden L, Brown S (2016) Global coastal wetland change under sea-level rise and related stresses: the DIVA wetland change model. Glob Planet Chang 139:15–30CrossRefGoogle Scholar
  41. UN (United Nations, Department of Economic and Social Affairs, Population Division) (2015) World urbanization prospects: the 2014 revision. United Nations, New YorkGoogle Scholar
  42. USGS (United States Geological Survey) (1996) Global digital elevation model: GTOPO30. http://earthexplorer.usgs.gov/
  43. van Vuuren DP, Kriegler E, O’Neill BC, Ebi KL, Riahi K, Carter TR, Edmonds J, Hallegatte S, Kram T, Mathur R, Winkler H (2014) A new scenario framework for climate change research: scenario matrix architecture. Clim Chang 122(3):373–386CrossRefGoogle Scholar
  44. Vousdoukas MI, Voukouvalas E, Mentaschi L, Dottori F, Giardino A, Bouziotas D, Bianchi A, Salamon P, Feyen L (2016) Developments in large-scale coastal flood hazard mapping. Nat Hazards Earth Syst Sci 16(8):1841–1853CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of GeographyKiel UniversityKielGermany
  2. 2.Global Climate Forum e.V. (GCF)BerlinGermany
  3. 3.Division of Resource Economics, Albrecht Daniel Thaer-Institute and Berlin Workshop in Institutional Analysis of Social-Ecological Systems (WINSHumboldt-UniversityBerlinGermany
  4. 4.Faculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUK
  5. 5.Tyndall Centre for Climate Change ResearchSouthamptonUK

Personalised recommendations