Climatic Change

, Volume 151, Issue 2, pp 289–302 | Cite as

Future evolution of extreme precipitation in the Mediterranean

  • Yves TramblayEmail author
  • Samuel Somot


Mediterranean basins can be impacted by severe floods caused by extreme rainfall, and there is a growing awareness about the possible increase in these heavy rainfall events due to climate change. In this study, the climate change impacts on extreme daily precipitation in 102 catchments covering the whole Mediterranean basin are investigated using nonstationary extreme value model applied to annual maximum precipitation in an ensemble of high-resolution regional climate model (RCM) simulations from the Euro-CORDEX experiment. Results indicate contrasted trends, with significant increasing trends in Northern catchments and conversely decreasing trends in Southern catchments. For most cases, the time of signal emergence for these trends is before the year 2000. The same spatial pattern is obtained under the two climate scenarios considered (RCP4.5 and RCP8.5) and in most RCM simulations, suggesting a robust climate change signal. The strongest multi-model agreement concerns the positive trends, which can exceed + 20% by the end of the twenty-first century in some simulations, impacting South France, North Italy, and the Balkans. For these areas, society-relevant strong impacts of such Mediterranean extreme precipitation changes could be expected in particular concerning flood-related damages.



The data used in the present work has been downloaded from the ESGF database. The authors wish to thank the participants of the Euro-CORDEX initiative. This work is a contribution to the HYdrological cycle in The Mediterranean EXperiment (HyMeX) program, through INSU-MISTRALS support. S. Somot work is supported by the HORIZON2020 EUCP project. The authors wish to acknowledge the two reviewers for their constructive comments.

Supplementary material

10584_2018_2300_MOESM1_ESM.pdf (688 kb)
ESM 1 (PDF 687 kb)


  1. Aalbers EA, Lendenrink G, van Meijgaard E, van den Hurk BJJM (2017) Local-scale changes in mean and heavy precipitation in Western Europe, climate change or internal variability? Clim Dyn. CrossRefGoogle Scholar
  2. Alpert P, Ben-Gai T, Baharad A, Benjamini Y, Yekutieli D, Colacino M, Diodato L, Ramis C, Homar V, Romero R, Michaelides S, Manes A (2002) The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophys Res Lett 29(11):31-1–31-4CrossRefGoogle Scholar
  3. Beaulant A-L, Joly B, Nuissier O, Somot S, Ducrocq V, Joly A, Sevault F, Déqué M, Ricard D (2011) Statistico-dynamical downscaling for Mediterranean heavy precipitation. Q J R Meteorol Soc 137(656):736–748. CrossRefGoogle Scholar
  4. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300Google Scholar
  5. Beranová R, Kyselý J, Hanel M (2017) Characteristics of sub-daily precipitation extremes in observed data and regional climate model simulations. Theor Appl Climatol. CrossRefGoogle Scholar
  6. Blanchet J, Molinié G, Touati J (2016) Spatial analysis of trend in extreme daily rainfall in southern France. Clim Dyn. CrossRefGoogle Scholar
  7. Coles GS (2001) An introduction to statistical modeling of extreme value. Springer-Verlag, HeidelbergCrossRefGoogle Scholar
  8. Colmet-Daage A, Sanchez-Gomez E, Ricci S, Llovel C, Borrell Estupina V, Quintana-Seguí P, Llasat MC, Servat E (2018) Evaluation of uncertainties in mean and extreme precipitation under climate changes for northwestern Mediterranean watersheds from high-resolution Med and Euro-CORDEX ensembles. Hydrol Earth Syst Sci.
  9. Déqué M, Somot S (2008) Extreme precipitation and high resolution with Aladin. Idöjaras Quaterly Journal of the Hungarian Meteorological Service 112(3–4):179–190Google Scholar
  10. Di Baldassarre G, Montanari A, Lins H, Koutsoyiannis D, Brandimarte L, Blöschl G (2010) Flood fatalities in Africa: from diagnosis to mitigation. Geophys Res Lett 37:L22402. CrossRefGoogle Scholar
  11. Donat MG, Lowry AL, Alexander LV, O’Gorman PA, Maher N (2016) More extreme precipitation in the world’s dry and wet regions. Nature Climate Change 6:508–513CrossRefGoogle Scholar
  12. Drobinski P, Silva ND, Panthou G, Bastin S, Muller C, Ahrens B, Borga M, Conte D, Fosser G, Giorgi F, Güttler I, Kotroni V, Li L, Morin E, Onol B, Quintana-Segui P, Romera R, Torma CZ (2016) Scaling precipitation extremes with temperature in the Mediterranean: past climate assessment and projection in anthropogenic scenarios. Clim Dyn. CrossRefGoogle Scholar
  13. El Adlouni S, Ouarda TBMJ, Zhang X, Roy R, Bobée B (2007) Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resour Res 43.
  14. Fantini A, Raffaele F, Torma C, Bacer S, Coppola E, Giorgi F, Verdecchia M (2016) Assessment of multiple daily precipitation statistics in ERA-Interim driven Med-CORDEX and EURO-CORDEX experiments against high resolution observations. Clim Dyn:1–24Google Scholar
  15. Filahi S, Tramblay Y, Mouhir L, Diaconescu EP (2017) Projected changes in temperature and precipitation in Morocco from high-resolution regional climate models. Int J Climatol 37(14):4846–4863CrossRefGoogle Scholar
  16. Fowler HJ, Cooley D, Sain SR, Thurston M (2010) Detecting change in UK extreme precipitation using results from the BBC climate change experiment. Extremes 13:241–267CrossRefGoogle Scholar
  17. Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:L08707. CrossRefGoogle Scholar
  18. Giorgi F, Bi X (2009) Time of emergence (TOE) of GHG-forced precipitation change hot-spots. Geophys Res Lett 36:L06709. CrossRefGoogle Scholar
  19. Hertig E, Seubert S, Paxian A, Vogt G, Paeth H, Jacobeit J (2014) Statistical modeling of extreme precipitation for the Mediterranean area under future climate change. Int J Climatol 34:1132–1156CrossRefGoogle Scholar
  20. Ivancic TJ, Shaw SB (2015) Examining why trends in very heavy precipitation should not be mistaken for trends in very high river discharge. Clim Chang 133:681–693CrossRefGoogle Scholar
  21. Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer L, Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, Meijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana J-F, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Chang 14(2):563–578CrossRefGoogle Scholar
  22. Jansà A, Alpert P, Arbogast P, Buzzi A, Ivancan-Picek B, Kotroni V, Llasat MC, Ramis C, Richard E, Romero R, Speranza A (2014) MEDEX: a general overview. Nat Hazards Earth Syst Sci 14:1965–1984CrossRefGoogle Scholar
  23. Jenkinson AF (1955) The frequency distribution of the annual maximum (or minimum) of meteorological elements. Q J R Meteorol Soc 81:158–171CrossRefGoogle Scholar
  24. Kharin VV, Zwiers FW, Zhang X, Wehner M (2013) Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim Chang 119:345–357CrossRefGoogle Scholar
  25. King AD, Donat MG, Fischer EM, Hawkins E, Alexander LV, D. J. Karoly D. J. (2015) The timing of anthropogenic emergence in simulated climate extremes. Environ Res Lett 10(9):94015. CrossRefGoogle Scholar
  26. Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010) Challenges in combining projections from multiple models. J Clim 23:2739–2758CrossRefGoogle Scholar
  27. Kyselý J, Beguería S, Beranová R, Gaál L, López-Moreno JI (2012) Different patterns of climate change scenarios for short-term and multi-day precipitation extremes in the Mediterranean. Glob Planet Chang 98–99:63–72. CrossRefGoogle Scholar
  28. Llasat MC, Llasat-Botija M, Petrucci O, Pasqua AA, Rosselló J, Vinet F, Boissier L (2013) Towards a database on societal impact of Mediterranean floods within the framework of the HYMEX project. Nat Hazards Earth Syst Sci 13:1337–1350CrossRefGoogle Scholar
  29. Maraun D (2013) When will trends in European mean and heavy daily precipitation emerge? Environ Res Lett 8:014004CrossRefGoogle Scholar
  30. Martins ES, Stedinger JR (2000) Generalized maximum likelihood GEV quantile estimators for hydrologic data. Water Resour Res 36:737–744CrossRefGoogle Scholar
  31. McSweeney CF, Jones RG, Lee RW, Rowell DP (2015) Selecting CMIP5 GCMs for downscaling over multiple regions. Clim Dyn 44:3237. CrossRefGoogle Scholar
  32. Min SK, Zhang X, Zwiers F, Friederichs P, Hense A (2009) Signal detectability in extreme precipitation changes assessed from twentieth century climate simulations. Clim Dyn 32:95–111CrossRefGoogle Scholar
  33. Nasri B, Tramblay Y, El Adlouni S, Hertig E, Ouarda T (2016) Atmospheric predictors for annual maximum daily precipitation in North Africa. J Appl Meteorol Climatol 55(4):1063–1076CrossRefGoogle Scholar
  34. Paeth H, Vogt G, Paxian A, Hertig E, Seubert S, Jacobeit J (2017) Quantifying the evidence of climate change in the light of uncertainty exemplified by the Mediterranean hot spot region. Glob Planet Chang 151:144–151CrossRefGoogle Scholar
  35. Paxian A, Hertig E, Seubert S, Vogt G, Jacobeit J, Paeth H (2015) Present-day and future Mediterranean precipitation extremes assessed by different statistical approaches. Clim Dyn 44:845–860CrossRefGoogle Scholar
  36. Pfahl S, O’Gorman PA, Fischer EM (2017) Understanding the regional pattern of projected future changes in extreme precipitation. Nat Clim Chang 7:423–427CrossRefGoogle Scholar
  37. Pierce DW, Barnett TP, Santer BD, Gleckler PJ (2009) Selecting global climate models for regional climate change studies. Proc Natl Acad Sci U S A 106:8441–8446CrossRefGoogle Scholar
  38. Planton S, Lionello P, Artale V, Aznar R, Carillo A, Colin J, Congedi L, Dubois C, Elizalde Arellano A, Gualdi S, Hertig E, Jordà Sanchez G, Li L, Jucundus J, Piani C, Ruti P, Sanchez-Gomez E, Sannino G, Sevault F, Somot S (2012) The climate of the Mediterranean region in future climate projections. The climate ofthe Mediterranean region. Elsevier, Amsterdam, pp 449–502 CrossRefGoogle Scholar
  39. Polade SD, Gershunov A, Cayan DR, Dettinger MD, Pierce DW (2017) Precipitation in a warming world: assessing projected hydro-climate changes in California and other Mediterranean climate regions. Sci Rep 7:10783. CrossRefGoogle Scholar
  40. Prein AF, Gobiet A, Truhetz H, Keuler K, Goergen K, Teichmann C, Fox Maule C, van Meijgaard E, Déqué M, Nikulin G, Vautard R, Colette A, Kjellström E, Jacob D (2015) Precipitation in the EURO-CORDEX and simulations: high resolution, high benefits? Clim Dyn 46:383–412CrossRefGoogle Scholar
  41. Rajczak J, Schär C (2017) Projections of future precipitation extremes over Europe: a multimodel assessment of climate simulations. J Geophys Res Atmos 122:10,773–10,800CrossRefGoogle Scholar
  42. Renard B, Lang M, Bois P, Dupeyrat A et al (2008) Regional methods for trend detection: assessing field significance and regional consistency. Water Resour Res 44:W08419. CrossRefGoogle Scholar
  43. Ribes A, Soulivanh T, Vautard R, Dubuisson B, Somot S, Colin J, Planton S, Soubeyroux J-M (2018) Observed increase in extreme daily rainfall in the French Mediterranean. Clim Dyn.
  44. Ruti PM, Somot S, Giorgi F, Dubois C, Flaounas E, Obermann A, Dell’Aquila A, Pisacane G, Harzallah A, Lombardi E, Ahrens B, Akhtar N, Alias A, Arsouze T, Aznar R, Bastin S, Bartholy J, Béranger K, Beuvier J, Bouffies-Cloché S, Brauch J, Cabos W, Calmanti S, Calvet J-C, Carillo A, Conte D, Coppola E, Djurdjevic V, Drobinski P, Elizalde-Arellano A, Gaertner M, Galàn P, Gallardo C, Gualdi S, Goncalves M, Jorba O, Jordà G, L’Heveder B, Lebeaupin-Brossier C, Li L, Liguori G, Lionello P, Maciàs D, Nabat P, Onol B, Raikovic B, Ramage K, Sevault F, Sannino G, Struglia MV, Sanna A, Torma C, Vervatis V (2016) MED-CORDEX initiative for Mediterranean climate studies. Bull Am Meteorol Soc 97(7):1187–1208. CrossRefGoogle Scholar
  45. Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J Geophys Res Atmos 118:2473–2493. CrossRefGoogle Scholar
  46. Toreti A, Xoplaki E, Maraun D, Kuglitsch FG, Wanner H, Luterbacher J (2010) Characterisation of extreme winter precipitation in Mediterranean coastal sites and associated anomalous atmospheric circulation patterns. Nat Hazards Earth Syst Sci 10:1037–1050CrossRefGoogle Scholar
  47. Toreti A, Naveau P, Zampieri M, Schindler A, Scoccimarro E, Xoplaki E, Dijkstra HA, Gualdi S, Luterbacher J (2013) Projections of global changes in precipitation extremes from coupled model intercomparison project phase 5 models. Geophys Res Lett 40:4887–4892CrossRefGoogle Scholar
  48. Tramblay Y, Neppel L, Carreau J, Sanchez-Gomez E (2012a) Extreme value modelling of daily areal rainfall over Mediterranean catchments in a changing climate. Hydrol Process 25(26):3934–3944CrossRefGoogle Scholar
  49. Tramblay Y, Badi W, Driouech F, El Adlouni S, Neppel L, Servat E (2012b) Climate change impacts on extreme precipitation in Morocco. Glob Planet Chang 82-83:104–114CrossRefGoogle Scholar
  50. Tramblay Y, Ruelland D, Somot S, Bouaicha R, Servat E (2013) High-resolution Med-CORDEX regional climate model simulations for hydrological impact studies: a first evaluation of the ALADIN-Climate model in Morocco. Hydrol Earth Syst Sci 17:3721–3739CrossRefGoogle Scholar
  51. Tramblay Y, Jarlan L, Hanich L, Somot S (2018) Future scenarios of surface water resources availability in North African dams. Water Resour Manag. CrossRefGoogle Scholar
  52. Vautard R, Yiou P, van Oldenborgh GJ, Lenderink G, Thao S, Ribes A, Planton S, Dubuisson B, Soubeyroux JM (2015) Extreme fall 2014 precipitation in the Cevennes mountains. Bull Am Meteorol Soc 96(12):S56–S60CrossRefGoogle Scholar
  53. Wasko C, Sharma A (2017) Global assessment of flood and storm extremes with increased temperatures. Sci Rep 7:7945. CrossRefGoogle Scholar
  54. Wilks DS (2006) On “field significance” and the false discovery rate. J Appl Meteorol Climatol 45:1181–1189. CrossRefGoogle Scholar
  55. Wilks DS (2016) “The stippling shows statistically significant grid points”: how research results are routinely overstated and overinterpreted, and what to do about it. Bull Am Meteorol Soc 97:2263–2273CrossRefGoogle Scholar
  56. Zhang X, Zweirs FW, Li G (2004) Monte Carlo experiments on the detection of trends in extreme values. J Clim 17:1945–1952CrossRefGoogle Scholar
  57. Zhang X, Zwiers FW, Li G, Wan H, Cannon AJ (2017) Complexity in estimating past and future extreme short-duration rainfall. Nat Geosci 10:255–259CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.HSM (Université de Montpellier, CNRS, IRD)MontpellierFrance
  2. 2.CNRM (Université de Toulouse, Météo-France, CNRS)ToulouseFrance

Personalised recommendations