Climatic Change

, Volume 148, Issue 4, pp 561–573 | Cite as

Climate change, population, and poverty: vulnerability and exposure to heat stress in countries bordering the Great Lakes of Africa

  • Salvi Asefi-Najafabady
  • Karen L Vandecar
  • Anton Seimon
  • Peter Lawrence
  • Deborah Lawrence


Global climate models predict increases in the frequency and intensity of extreme heat events across the African continent during the remainder of the twenty-first century. Projected increases in temperature extremes have significant implications for humanity, particularly in the African Great Lakes region (GLR) where some of the world’s poorest and most vulnerable populations reside. Using high-resolution Community Earth System Model (CESM) simulations to investigate the impacts of climate change under Representative Concentration Pathway (RCP) 8.5 and spatially explicit population trajectories consistent with two shared socio-economic pathways (SSPs), we contrast early and projected late century human exposure to temperature extremes and the associated potential health impacts for nine countries of the GLR. While all countries are projected to experience increases in the number of heat stress days, the greatest increases occur in the north and west, in parts of Kenya, Uganda, and the Democratic Republic of Congo. Nighttime relief diminishes due to 3–8° increases in average minimum temperatures. Country-wide population exposure to extreme heat stress increases 7- to 269-fold over current levels. Total population growth as well as rural-urban distribution patterns strongly influence outcomes, but to a lesser degree than the warming climate.


Funding information

We appreciate support from the University of Virginia, the National Center for Atmospheric Research, and a John D. and Catherine T. MacArthur Foundation grant (no. 108015) to the Appalachian State University.

Supplementary material

10584_2018_2211_MOESM1_ESM.docx (3.1 mb)
Figure S1 (DOCX 3203kb)
10584_2018_2211_MOESM2_ESM.docx (383 kb)
Figure S2 (DOCX 383kb)
10584_2018_2211_MOESM3_ESM.docx (911 kb)
Figure S3 (DOCX 911kb)
10584_2018_2211_MOESM4_ESM.docx (1.1 mb)
Figure S4 (DOCX 1095kb)
10584_2018_2211_MOESM5_ESM.docx (1.4 mb)
Figure S5 (DOCX 1406kb)
10584_2018_2211_MOESM6_ESM.docx (443 kb)
Figure S6 (DOCX 479kb)
10584_2018_2211_MOESM7_ESM.docx (1.3 mb)
Figure S7 (DOCX 1324kb)
10584_2018_2211_MOESM8_ESM.docx (578 kb)
Figure S8 (DOCX 574kb)
10584_2018_2211_MOESM9_ESM.docx (30 kb)
Table S1 (DOCX 31kb)
10584_2018_2211_MOESM10_ESM.docx (17 kb)
ESM 1 (DOCX 54kb)
10584_2018_2211_MOESM11_ESM.docx (22 kb)
ESM 2 (DOCX 21kb)
10584_2018_2211_MOESM12_ESM.docx (18 kb)
ESM 3 (DOCX 51kb)


  1. Alkire S, Conconi A, Seth S (2014) Multidimensional Poverty Index 2014: brief methodological note and results. Available
  2. Anyah RO, Qiu W (2012) Characteristic 20th and 21st century precipitation and temperature patterns and changes over the Greater Horn of Africa. Int J Climatol 32(3):347–363CrossRefGoogle Scholar
  3. Azongo DK, Awine T, Wak G, Binka FN, Rexford Oduro A (2012) A time series analysis of weather variables and all-cause mortality in the Kasena-Nankana Districts of Northern Ghana, 1995–2010. Glob Health Action 5(1):19073CrossRefGoogle Scholar
  4. Baccini M, Biggeri A, Accetta G, Kosatsky T, Katsouyanni K, Analitis A, Anderson HR, Bisanti L, D'ippoliti D, Danova J, Forsberg B (2008) Heat effects on mortality in 15 European cities. Epidemiology 19(5):711–719CrossRefGoogle Scholar
  5. Bacmeister JT, Reed KA, Hannay C, Lawrence P, Bates S, Truesdale JE, Rosenbloom N, Levy M (2016) Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model. Clim Chang.
  6. Burkart K, Khan MM, Schneider A, Breitner S, Langner M, Krämer A, Endlicher W (2014) The effects of season and meteorology on human mortality in tropical climates: a systematic review. Trans R Soc Trop Med Hyg 108(7):393–401CrossRefGoogle Scholar
  7. Collins JM (2011) Temperature variability over Africa. J Clim 24(14):3649–3666CrossRefGoogle Scholar
  8. Diboulo E, Sie A, Rocklöv J, Niamba L, Ye M, Bagagnan C, Sauerborn R (2012) Weather and mortality: a 10 year retrospective analysis of the Nouna Health and Demographic Surveillance System, Burkina Faso. Glob Health Action 5(1):19078CrossRefGoogle Scholar
  9. Diffenbaugh NS, Scherer M (2011) Observational and model evidence of global emergence of permanent, unprecedented heat in the 20th and 21st centuries. Clim Chang 107(3):615–624CrossRefGoogle Scholar
  10. Egondi T, Kyobutungi C, Kovats S, Muindi K, Ettarh R, Rocklöv J (2012) Time-series analysis of weather and mortality patterns in Nairobi’s informal settlements. Glob Health Action 5(1):19065CrossRefGoogle Scholar
  11. Engelbrecht F, Adegoke J, Bopape MJ, Naidoo M, Garland R, Thatcher M, McGregor J, Katzfey J, Werner M, Ichoku C, Gatebe C (2015) Projections of rapidly rising surface temperatures over Africa under low mitigation. Environ Res Lett 10(8):085004CrossRefGoogle Scholar
  12. Garland RM, Matooane M, Engelbrecht FA, Bopape MJ, Landman WA, Naidoo M, Merwe JV, Wright CY (2015) Regional projections of extreme apparent temperature days in Africa and the related potential risk to human health. Int J Environ Res Public Health 12(10):12577–12604CrossRefGoogle Scholar
  13. Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33(8).
  14. Guo Y, Gasparrini A, Armstrong B, Li S, Tawatsupa B, Tobias A, Lavigne E, Coelho MD, Leone M, Pan X, Tong S (2014) Global variation in the effects of ambient temperature on mortality: a systematic evaluation. Epidemiology 25(6):781CrossRefGoogle Scholar
  15. Hajat S, Kosatky T (2010) Heat-related mortality: a review and exploration of heterogeneity. J Epidemiol Community Health 64(9):753–760CrossRefGoogle Scholar
  16. Harlan SL, Chowell G, Yang S, Petitti DB, Morales Butler EJ, Ruddell BL, Ruddell DM (2014) Heat-related deaths in hot cities: estimates of human tolerance to high temperature thresholds. Int J Environ Res Public Health 11(3):3304–3326CrossRefGoogle Scholar
  17. Im ES, Pal JS, Eltahir EA (2017) Deadly heat waves projected in the densely populated agricultural regions of South Asia. Sci Adv 3(8):e1603322CrossRefGoogle Scholar
  18. IPCC 2013 Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Cambridge University Press, Cambridge, 1535 ppGoogle Scholar
  19. Jiang L, O’Neill BC (2015) Global urbanization projections for the shared socioeconomic pathways. Glob Environ ChangGoogle Scholar
  20. Jones B, O’Neill BC (2016) Spatially explicit global population scenarios consistent with the shared socioeconomic pathways. Environ Res Lett 11(8):084003CrossRefGoogle Scholar
  21. Jones B, O’Neill BC, McDaniel L, McGinnis S, Mearns LO, Tebaldi C (2015) Future population exposure to US heat extremes. Nat Clim Chang 5(7):652–655CrossRefGoogle Scholar
  22. Kovats RS, Hajat S (2008) Heat stress and public health: a critical review. Annu Rev Public Health 29:41–55CrossRefGoogle Scholar
  23. Kynast-Wolf G, Preuß M, Sié A, Kouyaté B, Becher H (2010) Seasonal patterns of cardiovascular disease mortality of adults in Burkina Faso, West Africa. Tropical Med Int Health 15(9):1082–1089Google Scholar
  24. Medina-Ramón M, Schwartz J (2007) Temperature, temperature extremes, and mortality: a study of acclimatisation and effect modification in 50 US cities. J Occup Environ Med 64(12):827–833CrossRefGoogle Scholar
  25. Meehl GA, Washington WM, Arblaster JM, Hu A, Teng H, Tebaldi C, Sanderson BN, Lamarque JF, Conley A, Strand WG, White JB III (2012) Climate system response to external forcings and climate change projections in CCSM4. J Clim 25(11):3661–3683CrossRefGoogle Scholar
  26. Motesharrei S, Rivas J, Kalnay E, Asrar GR, Busalacchi AJ, Cahalan RF, Cane MA, Colwell RR, Feng K, Franklin RS, Hubacek K (2016) Modeling sustainability: population, inequality, consumption, and bidirectional coupling of the Earth and Human Systems. Natl Sci Rev 3(4):470–494Google Scholar
  27. Mrema S, Shamte A, Selemani M, Masanja H (2012) The influence of weather on mortality in rural Tanzania: a time-series analysis 1999–2010. Glob Health Action 5(1):19068CrossRefGoogle Scholar
  28. Niang I, Ruppel OC, Abdrabo MA, Essel A, Lennard C, Padgham J, Urquhart P (2014) Africa. In Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC et al (eds) Cambridge University Press, Cambridge, pp. 1199–1265Google Scholar
  29. Omondi PA, Awange JL, Forootan E, Ogallo LA, Barakiza R, Girmaw GB, Fesseha I, Kululetera V, Kilembe C, Mbati MM, Kilavi M (2014) Changes in temperature and precipitation extremes over the Greater Horn of Africa region from 1961 to 2010. Int J Climatol 34(4):1262–1277CrossRefGoogle Scholar
  30. Orlowsky B, Seneviratne SI (2012) Global changes in extreme events: regional and seasonal dimension. Clim Chang 110(3):669–696CrossRefGoogle Scholar
  31. Ren X, Weitzel M, O’Neill BC, Lawrence P, Meiyappan P, Levis S, Balistreri EJ, Dalton M (2016) Avoided economic impacts of climate change on agriculture: integrating a land surface model (CLM) with a global economic model (iPETS). Clim Chang 1–15Google Scholar
  32. Riahi K, Van Vuuren DP, Kriegler E, Edmonds J, O’neill BC, Fujimori S, Bauer N, Calvin K, Dellink R, Fricko O, Lutz W (2017) The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob Environ Chang 42:153–168CrossRefGoogle Scholar
  33. Scovronick N, Sera F, Acquaotta F, Garzena D, Fratianni S, Wright CY, Gasparrini A (2018) The association between ambient temperature and mortality in South Africa: a time-series analysis. Environ Res 161:229–235CrossRefGoogle Scholar
  34. SeimonA, IngramJC, WatsonJEM (2012) Conservation strategy for the Great Lakes Region of east and central Africa, Ch. 5 (BirdLife International, 2012)Google Scholar
  35. Sherwood SC, Huber M (2010) An adaptability limit to climate change due to heat stress. Proc Natl Acad Sci 107(21):9552–9555CrossRefGoogle Scholar
  36. United Nations, Department of Economic and Social Affairs, Population Division (2015a). World population prospects: the 2015 revision, Key Findings and Advance Tables (ESA/P/WP241)Google Scholar
  37. United Nations, Department of Economic and Social Affairs, Population Division (2015b). World urbanization prospects: the 2014 revision, Highlights (ST/ESA/SER.A/366)Google Scholar
  38. Van Vuuren DP, Kriegler E, O’Neill BC, Ebi KL, Riahi K, Carter TR, Edmonds J, Hallegatte S, Kram T, Mathur R, Winkler H (2014) A new scenario framework for climate change research: scenario matrix architecture. Clim Chang 122(3):373–386CrossRefGoogle Scholar
  39. Wichmann J (2017) Heat effects of ambient apparent temperature on all-cause mortality in Cape Town, Durban and Johannesburg, South Africa: 2006–2010. Sci Total Environ 587:266–272CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Salvi Asefi-Najafabady
    • 1
    • 2
  • Karen L Vandecar
    • 1
  • Anton Seimon
    • 3
  • Peter Lawrence
    • 2
  • Deborah Lawrence
    • 1
  1. 1.University of VirginiaCharlottesvilleUSA
  2. 2.National Center for Atmospheric ResearchBoulderUSA
  3. 3.Appalachian State UniversityBooneUSA

Personalised recommendations