Advertisement

Climatic Change

, Volume 153, Issue 1–2, pp 59–78 | Cite as

Rangeland vulnerability to state transition under global climate change

  • Carissa L. WonkkaEmail author
  • Dirac Twidwell
  • Brady W. Allred
  • Christine H. Bielski
  • Victoria M. Donovan
  • Caleb P. Roberts
  • Samuel D. Fuhlendorf
Article

Abstract

The rapid pace of global climate change necessitates tools for prioritizing limited climate-adaptation resources in the face of imperfect knowledge regarding plant community responses to changing climate. In addition, global climate change often leads to novel shifts in plant communities which are difficult to anticipate with detailed models based on current system dynamics, which are often greatly altered under novel climates. In order to identify nonforested plant communities that are highly susceptible to state transitions under global climate change, we examined differences between the historical climate envelopes and end-of-century projections. We developed a vulnerability index based on the realized climate envelope for a given plant community relative to future climate exposure under two different climate-forcing models. To provide an approach to prioritizing climate-change adaptation resources at smaller scales, we used scenario analysis to determine the probability of falling outside of the historical climate envelope for each vegetation type present in a given management unit. The large-scale index consistently identified several areas as highly vulnerable to ecosystem state transition under future global climate change. South and north central Texas, the northwestern Great Plains and Rocky Mountain regions, eastern Kansas, and large portions of central and western Texas appear most vulnerable under both climate models. Scenarios identified thresholds of potential state shift for every vegetation type in the small-scale management areas investigated. Our study identifies a simple method for determining the relative vulnerability of nonforested plant communities to state shifts, providing a robust approach for prioritizing limited climate-adaptation resources at multiple scales.

Keywords

Rangelands Scenario analysis Alternative states 

Notes

Acknowledgements

We thank Maribeth Milner for creating the maps.

Funding information

This research was funded by the US Army Engineer Research and Development Center (ERDC) Natural Resources Stewardship (EL-21) program, grant award W912HZ-12-1-0003.

Supplementary material

10584_2018_2365_MOESM1_ESM.pdf (56 kb)
(PDF 55.7 KB)
10584_2018_2365_MOESM2_ESM.pdf (36.3 mb)
(PDF 36.3 MB)
10584_2018_2365_MOESM3_ESM.pdf (81 kb)
(PDF 81.1 KB)

References

  1. Augustine DJ, Blumenthal DM, Springer TL, LeCain DR, Gunter SA, Derner JD (2018) Ecol Appl 28(3):721CrossRefGoogle Scholar
  2. Bestelmeyer BT, Herrick JE, Brown JR, Trujillo DA, Havstad KM (2004) Environmental Management 34(1):38.  https://doi.org/10.1007/s00267-004-0047-4, http://link.springer.com.lib-ezproxy.tamu.edu:2048/article/10.1007/s00267-004-0047-4 CrossRefGoogle Scholar
  3. Bestelmeyer BT, Okin GS, Duniway MC, Archer SR, Sayre NF, Williamson JC, Herrick JE (2015) Front Ecol Environ 13(1):28CrossRefGoogle Scholar
  4. Blumenthal DM, Resco V, Morgan JA, Williams DG, LeCain DR, Hardy EM, Pendall E, Bladyka E (2013) New Phytol 200(4):1156CrossRefGoogle Scholar
  5. Briske DD, Fuhlendorf SD, Smeins FE (2006) Rangel Ecol Manag 59(3):225. http://www.jstor.org.lib-ezproxy.tamu.edu:2048/stable/3899924 CrossRefGoogle Scholar
  6. Briske DD, Joyce LA, Polley HW, Brown JR, Wolter K, Morgan JA, McCarl BA, Bailey DW (2015) Front Ecol Environ 13(5):249CrossRefGoogle Scholar
  7. Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G, Liancourt P, Tielbörger K, Travis JM, Anthelme F (2008) J Ecol 96(1):18Google Scholar
  8. Callaway RM, Aschehoug ET (2000) Science 290(5491):521CrossRefGoogle Scholar
  9. Callaway RM, Brooker R, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET (2002) Nature 417(6891):844CrossRefGoogle Scholar
  10. Cess RD, Potter G, Blanchet J, Boer G, Del Genio A, Deque M, Dymnikov V, Galin V, Gates W, Ghan S et al (1990) J Geophys Res-Atmos 95(D10):16601CrossRefGoogle Scholar
  11. Chaplin-Kramer R, Tuxen-Bettman K, Kremen C (2011) Rangelands 33(3):33CrossRefGoogle Scholar
  12. Christensen L, Coughenour MB, Ellis JE, Chen ZZ (2004) Clim Chang 63(3):351CrossRefGoogle Scholar
  13. Clark JS, Bell DM, Hersh MH, Nichols L (2011) Glob Chang Biol 17(5):1834CrossRefGoogle Scholar
  14. Comer P, Faber-Langendoen D, Evans R, Gawler S, Josse C, Kittel G, Menard S, Pyne M, Reid M, Schulz K (2003) Natureserve, Arlington VAGoogle Scholar
  15. Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD (2001) Glob Chang Biol 7 (4):357CrossRefGoogle Scholar
  16. De Kauwe MG, Medlyn BE, Walker AP, Zaehle S, Asao S, Guenet B, Harper AB, Hickler T, Jain AK, Luo Y et al (2017) Glob Chang Biol 23(9):3623CrossRefGoogle Scholar
  17. Dougill AJ, Fraser EDG, Reed MS (2010) Anticipating vulnerability to climate change in dryland pastoral systems: using dynamic systems models for the Kalahari. Ecol Soc 15(2):17CrossRefGoogle Scholar
  18. Füssel HM (2007) Glob Environ Chang 17(2):155CrossRefGoogle Scholar
  19. Füssel HM (2010) Review and quantitative analysis of indices of climate change exposure, adaptive capacity, sensitivity, and impacts (Washington DC: World BankGoogle Scholar
  20. Füssel HM, Klein RJ (2006) Clim Chang 75(3):301CrossRefGoogle Scholar
  21. Gill JL, Williams JW, Jackson ST, Lininger KB, Robinson GS (2009) Science 326(5956):1100CrossRefGoogle Scholar
  22. Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD (2010) Trends Ecol Evol 25(6):325CrossRefGoogle Scholar
  23. Gnass Giese EE, Howe RW, Wolf AT, Miller NA, Walton NG (2015) Ecosphere 6(6):1CrossRefGoogle Scholar
  24. Gonzalez P, Neilson RP, Lenihan JM, Drapek RJ (2010) Glob Ecol Biogeogr 19(6):755CrossRefGoogle Scholar
  25. Grimm NB, Chapin FS, Bierwagen B, Gonzalez P, Groffman PM, Luo Y, Melton F, Nadelhoffer K, Pairis A, Raymond PA (2013) Front Ecol Environ 11(9):474CrossRefGoogle Scholar
  26. Hanson J, Baker B, Bourdon R (1993) Agric Syst 41(4):487CrossRefGoogle Scholar
  27. Havstad KM, Peters DP, Skaggs R, Brown J, Bestelmeyer B, Fredrickson E, Herrick J, Wright J (2007) Ecol Econ 64(2):261CrossRefGoogle Scholar
  28. Heikkinen RK, Luoto M, Araújo MB, Virkkala R, Thuiller W, Sykes MT (2006) Prog Phys Geogr 30(6):751CrossRefGoogle Scholar
  29. Higgins PA, Harte J (2012) J Clim 25(21):7660CrossRefGoogle Scholar
  30. IPCC A (2007) Climate change 2007: synthesis reportGoogle Scholar
  31. Iverson L, Prasad A, Matthews S (2008) Mitig Adapt Strateg Glob Chang 13(5-6):487CrossRefGoogle Scholar
  32. Jaarsveld ASV, Freitag S, Chown SL, Muller C, Koch S, Hull H, Bellamy C, Krüger M, Endrödy-Younga S, Mansell MW, Scholtz CH (1998) Science 279(5359):2106.  https://doi.org/10.1126/science.279.5359.2106. http://www.sciencemag.org/content/279/5359/2106 CrossRefGoogle Scholar
  33. Joyce LA, Briske DD, Brown JR, Polley HW, McCarl BA, Bailey DW (2013) Rangel Ecol Manag 66(5):512CrossRefGoogle Scholar
  34. Klanderud K (2005) J Ecol 93(1):127CrossRefGoogle Scholar
  35. Lawler JJ (2009) Ann N Y Acad Sci 1162(1):79CrossRefGoogle Scholar
  36. Leemans R, Eickhout B (2004) Glob Environ Chang 14(3):219CrossRefGoogle Scholar
  37. Mäler KG (2000) Eur Econ Rev 44(4-6):645CrossRefGoogle Scholar
  38. Martin R, Müller B, Linstädter A, Frank K (2014) Glob Environ Chang 24:183CrossRefGoogle Scholar
  39. Meier GA, Brown JF, Evelsizer RJ, Vogelmann JE (2015) Ecol Indic 48:189CrossRefGoogle Scholar
  40. Mooney H, Larigauderie A, Cesario M, Elmquist T, Hoegh-Guldberg O, Lavorel S, Mace GM, Palmer M, Scholes R, Yahara T (2009) Curr Opin Environ Sustain 1(1):46CrossRefGoogle Scholar
  41. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T (2010) Nature 463(7282):747CrossRefGoogle Scholar
  42. Mueller KE, Blumenthal DM, Pendall E, Carrillo Y, Dijkstra FA, Williams DG, Follett RF, Morgan JA (2016) Ecol Lett 19(8):956CrossRefGoogle Scholar
  43. Niu S, Luo Y, Li D, Cao S, Xia J, Li J, Smith MD (2014) Environ Exp Bot 98:13CrossRefGoogle Scholar
  44. Olson LE, Sauder JD, Albrecht NM, Vinkey RS, Cushman SA, Schwartz MK (2014) Biol Conserv 169:89CrossRefGoogle Scholar
  45. Polley HW, Briske DD, Morgan JA, Wolter K, Bailey DW, Brown JR (2013) Rangel Ecol Manag 66(5):493CrossRefGoogle Scholar
  46. Preston BL, Yuen EJ, Westaway RM (2011) Sustain Sci 6(2):177CrossRefGoogle Scholar
  47. Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J (2007) In: Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the IPCC (FAR) (Cambridge University Press), pp 589–662Google Scholar
  48. Reeves MC, Moreno AL, Bagne KE, Running SW (2014) Clim Chang 126(3-4):429CrossRefGoogle Scholar
  49. Rocha JC, Peterson GD, Biggs R (2015) PLOs One 10(8):e0134639CrossRefGoogle Scholar
  50. Rollins MG (2009) Int J Wildland Fire 18(3):235CrossRefGoogle Scholar
  51. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Nature 413(6856):591CrossRefGoogle Scholar
  52. Silverman BW (1986) Density estimation for statistics and data analysis. Routledge, AbingdonCrossRefGoogle Scholar
  53. Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan J, Levis S, Lucht W, Sykes MT (2003) Glob Chang Biol 9(2):161CrossRefGoogle Scholar
  54. Smit B, Wandel J (2006) Glob Environ Chang 16(3):282CrossRefGoogle Scholar
  55. Stein BA, Scott C, Benton N (2008) BioScience. 58(4).  https://doi.org/10.1641/B580409, bibtex[eprint=/oup/backfile/content_public/journal/bioscience/58/4/10.1641_b580409/4/58-4-339.pdf]
  56. Tazik DJ, Martin CO (2002) Arid Land Res Manag 16(3):259CrossRefGoogle Scholar
  57. Thuiller W (2004) Glob Chang Biol 10(12):2020CrossRefGoogle Scholar
  58. Vincent CH, Hanson LA, Argueta CN (2017) Federal land ownership: overview and data. Congressional research, service report R42346Google Scholar
  59. Volder A, Briske DD, Tjoelker MG (2013) Glob Chang Biol 19(3):843CrossRefGoogle Scholar
  60. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Nature 416(6879):389CrossRefGoogle Scholar
  61. Wang Y, Nemani R, Dieffenbach F, Stolte K, Holcomb G, Robinson M, Reese CC, Reese M, Duhaime R, Tierney G et al (2010) 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). (IEEE), pp 2095–2098Google Scholar
  62. Watson JE, Iwamura T, Butt N (2013) Nat Clim Chang 3(11):989CrossRefGoogle Scholar
  63. Wilbanks TJ, Kates RW (1999) Clim Chang 43(3):601CrossRefGoogle Scholar
  64. Williams JW, Jackson ST (2007) Front Ecol Environ 5(9):475CrossRefGoogle Scholar
  65. Wise R, Fazey I, Smith MS, Park S, Eakin H, Van Garderen EA, Campbell B (2014) Glob Environ Chang 28:325CrossRefGoogle Scholar
  66. Wuebbles D, Fahey D, Hibbard K, Dokken B, Stewart B, Maycock T (2017) In: Washington, DC, p 470Google Scholar
  67. Yang H, Wu M, Liu W, Zhang Z, Zhang N, Wan S (2011) Glob Chang Biol 17(1):452.  https://doi.org/10.1111/j.1365-2486.2010.02253.x CrossRefGoogle Scholar
  68. Zelikova TJ, Blumenthal DM, Williams DG, Souza L, LeCain DR, Morgan J, Pendall E (2014) Proc Natl Acad Sci 111(43):15456CrossRefGoogle Scholar
  69. Zelikova TJ, Williams DG, Hoenigman R, Blumenthal DM, Morgan JA, Pendall E (2015) J Ecol 103(5):1119CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Agronomy and HorticultureUniversity of NebraskaLincolnUSA
  2. 2.College of Forestry and ConservationUniversity of MontanaMissoulaUSA
  3. 3.Department of Natural Resource Ecology and ManagementOklahoma State UniversityStillwaterUSA

Personalised recommendations