Climatic Change

, Volume 126, Issue 3–4, pp 337–349 | Cite as

Why are climate policies of the present decade so crucial for keeping the 2 °C target credible?

  • Baptiste Perrissin FabertEmail author
  • Antonin Pottier
  • Etienne Espagne
  • Patrice Dumas
  • Franck Nadaud


Decision-makers have confirmed the long term objective of preventing a temperature increase greater than 2 °C. This paper aims at appraising by means of a cost-benefit analysis whether decision makers’ commitment to meet the 2 °C objective is credible or not. Within the framework of a cost-benefit type integrated assessment model, we consider that the economy faces climate damages with a threshold at 2 °C. We run the model for a broad set of scenarios accounting for the diversity of “worldviews” in the climate debate. For a significant share of scenarios we observe that it is considered optimal to exceed the threshold. Among those “non-compliers” we discriminate ”involuntary non-compliers” who cannot avoid the exceedance due to physical constraint from ”deliberate compliers” for whom the exceedance results from a deliberate costs-benefit analysis. A second result is that the later mitigation efforts begin, the more difficult it becomes to prevent the exceedance. In particular, the number of ”deliberate non-compliers” dramatically increases if mitigation efforts do not start by 2020, and the influx of involuntary non-compliers become overwhelming f efforts are delayed to 2040. In light of these results we argue that the window of opportunity for reaching the 2 °C objective with a credible chance of success is rapidly closing during the present decade. Further delay in finding a climate agreement critically undermines the credibility of the objective.


Climate Policy Climate Sensitivity Abatement Cost Damage Function Social Planner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

10584_2014_1222_MOESM1_ESM.pdf (420 kb)
ESM 1 (DOCX 175 kb)


  1. Ambrosi P, Hourcade J, Hallegatte S, Lecocq F, Dumas P, Ha-Duong M (2003) Optimal control models and elicitation of attitudes towards climate damages. Environ Model Assess 8 (3): 133–147CrossRefGoogle Scholar
  2. Archer D, Brovkin V (2008) The millennial atmospheric lifetime of anthropogenic CO2. Clim Chang 90 (3): 283–297CrossRefGoogle Scholar
  3. Archer D, Eby M, Brovkin V, Ridgwell A, Cao L, Mikolajewicz U, Caldeira K, Matsumoto K, Munhoven G, Montenegro A, et al (2009) Atmospheric lifetime of fossil fuel carbon dioxide. Ann Rev Earth Planet Sci 37: 117–134CrossRefGoogle Scholar
  4. Cass D (1965) Optimum growth in an aggregative model of capital accumulation. Rev Econ Stud 32 (3): 233–240CrossRefGoogle Scholar
  5. Cointe B, Ravon P-A, Gurin E (2011) 2 °C: the history of a policy-science nexus. Working Papers IDDRI, n°19/11Google Scholar
  6. Dasgupta P (2007) Commentary: the Stern review’s economics of climate change. Natl Inst Econ Rev 199 (1): 4–7Google Scholar
  7. Davis S, Caldeira K, Matthews H (2010) Future CO2 emissions and climate change from existing energy infrastructure. Science 329 (5997): 1330–1333CrossRefGoogle Scholar
  8. Dietz T, Ostrom E, Stern P (2003) The struggle to govern the commons. Science 302 (5652): 1907–1912CrossRefGoogle Scholar
  9. Friedlingstein P, Cox P, Betts R, Bopp L, Von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, et al. (2006) Climate-carbon cycle feedback analysis: results from the c4mip model intercomparison. J Clim 19 (14): 3337–3353CrossRefGoogle Scholar
  10. Gitz V, Ciais P, et al. (2003) Amplifying effects of land-use change on future atmospheric co2 levels. Glob Biogeochem Cycles 17 (1): 1024–1029CrossRefGoogle Scholar
  11. Gjerde J, Grepperud S, Kverndokk S (1999) Optimal climate policy under the possibility of a catastrophe. Resour Energy Econ 21 (3): 289–317CrossRefGoogle Scholar
  12. Guivarch C, allegatte S (2012) 2 °C or not 2 °C? Glob Environ Chang 3 (1): 179 –192Google Scholar
  13. IPCC (2007) Climate change 2007: mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  14. Keller K, Bolker B, Bradford D (2004) Uncertain climate thresholds and optimal economic growth. J Environ Econ Manag 48 (1): 723–741CrossRefGoogle Scholar
  15. Keller K, Robinson A, Bradford D, Oppenheimer M (2007) The regrets of procrastination in climate policy. Environ Res Lett 2: 024004CrossRefGoogle Scholar
  16. Koopmans T (1963) Appendix to on the concept of optimal economic growth. Cowles Foundation Discussion Papers.Google Scholar
  17. Lempert R, Groves D, Popper S, Bankes S (2006a) A general, analytic method for generating robust strategies and narrative scenarios. Manag Sci 52 (4): 514CrossRefGoogle Scholar
  18. Lempert R, Sanstad A, Schlesinger M (2006b) Multiple equilibria in a stochastic implementation of dice with abrupt climate change. Energy Econ 28 (5): 677–689CrossRefGoogle Scholar
  19. McInerney D, Keller K (2008) Economically optimal risk reduction strategies in the face of uncertain climate thresholds. Clim Chang 91 (1): 29–41CrossRefGoogle Scholar
  20. McInerney D, Lempert R, Keller K. (2009) What are robust strategies in the face of uncertain climate threshold responses Clim Chang: 1–22Google Scholar
  21. Nordhaus W (1994) Managing the global commons: the economics of climate change. MIT Press, Cambridge. MAGoogle Scholar
  22. Nordhaus W (2007) A Review of the Stern review on the economics of climate change. J Econ Lit 45 (3): 686–702CrossRefGoogle Scholar
  23. Nordhaus W (2008) A question of balance. Yale University PressGoogle Scholar
  24. Nordhaus W, Boyer J (2003) Warming the world: economic models of global warming. the MIT PressGoogle Scholar
  25. Ostrom E, Burger J, Field C., Norgaard R, Policansky D (1999) Revisiting the commons: local lessons, global challenges. Science 284 (5412): 278–282CrossRefGoogle Scholar
  26. Ramsey F (1928) A mathematical theory of saving. Econ J 38 (152): 543–559CrossRefGoogle Scholar
  27. Randalls S (2010) History of the 2 c climate target. Wiley Interdiscip Rev Clim Chang 1 (4): 598–605CrossRefGoogle Scholar
  28. Roe G, Baker M (2007) Why is climate sensitivity so unpredictable Science 318 (5850): 629CrossRefGoogle Scholar
  29. Rogelj J, McCollum D L, Reisinger A, Meinshausen M, Riahi K (2013) Probabilistic cost estimates for climate change mitigation. Nature 493 (7430): 79–83CrossRefGoogle Scholar
  30. Schneider S, Thompson S (1981) Atmospheric CO2 and climate: importance of the transient response. J Geophys Res 86 (C4): 3135–3147CrossRefGoogle Scholar
  31. Stern N (2006) The economics of climate change. The Stern review. Cambridge University PressGoogle Scholar
  32. Tol R S J (2009) Climate feedbacks on the terrestrial biosphere and the economics of climate policy: an application of fund. Technical Report WP288, Economic and Social Research Institute (ESRI)Google Scholar
  33. Weitzman M (2007) A review of the Stern review on the economics of climate change. J Econ Lit 45 (3): 703–724CrossRefGoogle Scholar
  34. Weitzman M (2009) On modeling and interpreting the economics of catastrophic climate change. Rev Econ Stat 91 (1): 1–19CrossRefGoogle Scholar
  35. Yohe G, Tol R (2007) The Stern Review: implications for climate change. Environ Sci Pol Sustain Dev 49 (2): 36–43CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Baptiste Perrissin Fabert
    • 1
    Email author
  • Antonin Pottier
    • 1
  • Etienne Espagne
    • 1
  • Patrice Dumas
    • 2
  • Franck Nadaud
    • 1
  1. 1.Centre International de Recherche sur l’Environnement et le Dveloppement (CIRED)Nogent-sur-MarneFrance
  2. 2.Centre International de Recherche Agronomique pour le Dveloppement (CIRAD)MontpellierFrance

Personalised recommendations