Advertisement

Cellular and genomic approaches for exploring structural chromosomal rearrangements

  • Qing Hu
  • Elizabeth G. Maurais
  • Peter LyEmail author
Review

Abstract

Human chromosomes are arranged in a linear and conserved sequence order that undergoes further spatial folding within the three-dimensional space of the nucleus. Although structural variations in this organization are an important source of natural genetic diversity, cytogenetic aberrations can also underlie a number of human diseases and disorders. Approaches for studying chromosome structure began half a century ago with karyotyping of Giemsa-banded chromosomes and has now evolved to encompass high-resolution fluorescence microscopy, reporter-based assays, and next-generation DNA sequencing technologies. Here, we provide a general overview of experimental methods at different resolution and sensitivity scales and discuss how they can be complemented to provide synergistic insight into the study of human chromosome structural rearrangements. These approaches range from kilobase-level resolution DNA fluorescence in situ hybridization (FISH)-based imaging approaches of individual cells to genome-wide sequencing strategies that can capture nucleotide-level information from diverse sample types. Technological advances coupled to the combinatorial use of multiple methods have resulted in the discovery of new rearrangement classes along with mechanistic insights into the processes that drive structural alterations in the human genome.

Keywords

Cytogenetics Karyotype FISH Genome instability Chromosome rearrangements Structural variants 

Abbreviations

BAC

bacterial artificial chromosome

DNA DSB

DNA double-strand break

DNA FISH

DNA fluorescence in situ hybridization

ecDNA

extrachromosomal DNA

G-banding

giemsa banding

GCR

gross chromosomal rearrangement

NOR

nucleolus organizing region

SIM

structured illumination microscopy

SNP

single-nucleotide polymorphism

STORM

stochastic optical reconstruction microscopy

WGS

whole-genome sequencing

Notes

Acknowledgments

We thank Kathleen Wilson and Sangeeta Patel (UT Southwestern Medical Center) for providing figures of G-banded karyotypes. This work was supported by the US National Institutes of Health (R00CA218871 to P.L.) and the Cancer Prevention and Research Institute of Texas (RR180050 to P.L.).

References

  1. Amor DJ, Bentley K, Ryan J, Perry J, Wong L, Slater H, Choo KH (2004) Human centromere repositioning "in progress". Proc Natl Acad Sci U S A 101:6542–6547PubMedPubMedCentralCrossRefGoogle Scholar
  2. Asakawa S, Abe I, Kudoh Y, Kishi N, Wang Y, Kubota R, Kudoh J, Kawasaki K, Minoshima S, Shimizu N (1997) Human BAC library: construction and rapid screening. Gene 191:69–79PubMedCrossRefGoogle Scholar
  3. Baumgartner A, Weier JF, Weier H-UG (2006) Chromosome-specific DNA repeat probes. J Histochem Cytochem 54:1363–1370PubMedPubMedCentralCrossRefGoogle Scholar
  4. Beliveau BJ, Joyce EF, Apostolopoulos N, Yilmaz F, Fonseka CY, McCole R, Chang Y, Li JB, Senaratne TN, Williams BR, Rouillard JM, Wu CT (2012) Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc Natl Acad Sci U S A 109:21301–21306PubMedPubMedCentralCrossRefGoogle Scholar
  5. Beliveau BJ et al (2015) Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nat Commun 6:7147PubMedPubMedCentralCrossRefGoogle Scholar
  6. Beliveau BJ, Boettiger AN, Nir G, Bintu B, Yin P, Zhuang X, Wu CT (2017) In situ super-resolution imaging of genomic DNA with OligoSTORM and OligoDNA-PAINT. Methods Mol Biol 1663:231–252PubMedPubMedCentralCrossRefGoogle Scholar
  7. Beliveau BJ et al (2018) OligoMiner provides a rapid, flexible environment for the design of genome-scale oligonucleotide in situ hybridization probes. Proc Natl Acad Sci 115:E2183–E2192PubMedCrossRefGoogle Scholar
  8. Ben-David U, Mayshar Y, Benvenisty N (2013) Virtual karyotyping of pluripotent stem cells on the basis of their global gene expression profiles. Nat Protoc 8:989–997PubMedCrossRefGoogle Scholar
  9. Bishop R (2010) Applications of fluorescence in situ hybridization (FISH) in detecting genetic aberrations of medical significance. Biosci Horiz 3:85–95CrossRefGoogle Scholar
  10. Burman B, Misteli T, Pegoraro G (2015) Quantitative detection of rare interphase chromosome breaks and translocations by high-throughput imaging. Genome Biol 16:146PubMedPubMedCentralCrossRefGoogle Scholar
  11. Campbell PJ et al (2008) Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat Genet 40:722–729PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS, Huang B (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–1491PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cheung VG, Nowak N, Jang W, Kirsch IR, Zhao S, Chen XN, Furey TS, Kim UJ, Kuo WL, Olivier M, Conroy J, Kasprzyk A, Massa H, Yonescu R, Sait S, Thoreen C, Snijders A, Lemyre E, Bailey JA, Bruzel A, Burrill WD, Clegg SM, Collins S, Dhami P, Friedman C, Han CS, Herrick S, Lee J, Ligon AH, Lowry S, Morley M, Narasimhan S, Osoegawa K, Peng Z, Plajzer-Frick I, Quade BJ, Scott D, Sirotkin K, Thorpe AA, Gray JW, Hudson J, Pinkel D, Ried T, Rowen L, Shen-Ong GL, Strausberg RL, Birney E, Callen DF, Cheng JF, Cox DR, Doggett NA, Carter NP, Eichler EE, Haussler D, Korenberg JR, Morton CC, Albertson D, Schuler G, de Jong PJ, Trask BJ, BAC Resource Consortium (2001) Integration of cytogenetic landmarks into the draft sequence of the human genome. Nature 409:953–958PubMedCrossRefGoogle Scholar
  14. Chiarle R, Zhang Y, Frock RL, Lewis SM, Molinie B, Ho YJ, Myers DR, Choi VW, Compagno M, Malkin DJ, Neuberg D, Monti S, Giallourakis CC, Gostissa M, Alt FW (2011) Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 147:107–119PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chudoba I, Plesch A, Lörch T, Lemke J, Claussen U, Senger G (1999) High resolution multicolor-banding: a new technique for refined FISH analysis of human chromosomes. Cytogenet Cell Genet 84:156–160PubMedCrossRefGoogle Scholar
  16. Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV, Pan Y, Nezi L, Protopopov A, Chowdhury D, Pellman D (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482:53–58PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cremer T, Lichter P, Borden J, Ward DC, Manuelidis L (1988) Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome-specific library probes. Hum Genet 80:235–246PubMedCrossRefGoogle Scholar
  18. Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295:1306–1311PubMedCrossRefGoogle Scholar
  19. Dixon JR, Xu J, Dileep V, Zhan Y, Song F, le VT, Yardımcı GG, Chakraborty A, Bann DV, Wang Y, Clark R, Zhang L, Yang H, Liu T, Iyyanki S, An L, Pool C, Sasaki T, Rivera-Mulia JC, Ozadam H, Lajoie BR, Kaul R, Buckley M, Lee K, Diegel M, Pezic D, Ernst C, Hadjur S, Odom DT, Stamatoyannopoulos JA, Broach JR, Hardison RC, Ay F, Noble WS, Dekker J, Gilbert DM, Yue F (2018) Integrative detection and analysis of structural variation in cancer genomes. Nat Genet 50:1388–1398PubMedPubMedCentralCrossRefGoogle Scholar
  20. Drets ME, Shaw MW (1971) Specific banding patterns of human chromosomes. Proc Natl Acad Sci U S A 68:2073–2077PubMedPubMedCentralCrossRefGoogle Scholar
  21. Feuk L, Carson AR, Scherer SW (2006) Structural variation in the human genome. Nat Rev Genet 7:85–97PubMedCrossRefGoogle Scholar
  22. Ford CE, Hamerton JL (1956) The chromosomes of man. Nature 178:1020–1023PubMedCrossRefGoogle Scholar
  23. Gall JG, Pardue ML (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci U S A 63:378–383PubMedPubMedCentralCrossRefGoogle Scholar
  24. Genet MD, Cartwright IM, Kato TA (2013) Direct DNA and PNA probe binding to telomeric regions without classical in situ hybridization. Mol Cytogenet 6:42–42PubMedPubMedCentralCrossRefGoogle Scholar
  25. Giunta S (2018) Centromere chromosome orientation fluorescent in situ hybridization (Cen-CO-FISH) detects sister chromatid exchange at the centromere in human cells. Bio-protocol 8:e2792PubMedPubMedCentralCrossRefGoogle Scholar
  26. Goodpasture C, Bloom SE (1975) Visualization of nucleolar organizer regions im mammalian chromosomes using silver staining. Chromosoma 53:37–50PubMedCrossRefGoogle Scholar
  27. Gustafsson MG et al (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94:4957–4970PubMedPubMedCentralCrossRefGoogle Scholar
  28. Gutiérrez-Mateo C et al (2005) Karyotyping of human oocytes by cenM-FISH, a new 24-colour centromere-specific technique. Hum Reprod 20:3395–3401PubMedCrossRefGoogle Scholar
  29. Hausmann M et al (2003) COMBO-FISH: specific labeling of nondenatured chromatin targets by computer-selected DNA oligonucleotide probe combinations. Biotechniques 35(564–570):572–567Google Scholar
  30. Hu Q et al (2019) Break-induced replication plays a prominent role in long-range repeat-mediated deletion. EMBO J:e101751Google Scholar
  31. Ju YS et al (2015) Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells. Genome Res 25:814–824PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258:818–821PubMedCrossRefGoogle Scholar
  33. Kishi JY, Lapan SW, Beliveau BJ, West ER, Zhu A, Sasaki HM, Saka SK, Wang Y, Cepko CL, Yin P (2019) SABER amplifies FISH: enhanced multiplexed imaging of RNA and DNA in cells and tissues. Nat Methods 16:533–544PubMedPubMedCentralCrossRefGoogle Scholar
  34. Klein IA, Resch W, Jankovic M, Oliveira T, Yamane A, Nakahashi H, di Virgilio M, Bothmer A, Nussenzweig A, Robbiani DF, Casellas R, Nussenzweig MC (2011) Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell 147:95–106PubMedPubMedCentralCrossRefGoogle Scholar
  35. Kosyakova N et al (2013) Generation of multicolor banding probes for chromosomes of different species. Mol Cytogenet 6:6PubMedPubMedCentralCrossRefGoogle Scholar
  36. Le Scouarnec S, Gribble SM (2012) Characterising chromosome rearrangements: recent technical advances in molecular cytogenetics. Heredity (Edinb) 108:75–85CrossRefGoogle Scholar
  37. Li Y et al (2015) A versatile reporter system for CRISPR-mediated chromosomal rearrangements. Genome Biol 16:111PubMedPubMedCentralCrossRefGoogle Scholar
  38. Lichter P, Cremer T, Borden J, Manuelidis L, Ward DC (1988) Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum Genet 80:224–234PubMedCrossRefPubMedCentralGoogle Scholar
  39. Lieberman-Aiden E, van Berkum N, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293PubMedPubMedCentralCrossRefGoogle Scholar
  40. Lupski JR (1998) Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet 14:417–422PubMedCrossRefGoogle Scholar
  41. Lupski JR (2007) Genomic rearrangements and sporadic disease. Nat Genet 39:S43–S47PubMedCrossRefGoogle Scholar
  42. Ly P, Teitz LS, Kim DH, Shoshani O, Skaletsky H, Fachinetti D, Page DC, Cleveland DW (2017) Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining. Nat Cell Biol 19:68–75PubMedCrossRefGoogle Scholar
  43. Ly P, Brunner SF, Shoshani O, Kim DH, Lan W, Pyntikova T, Flanagan AM, Behjati S, Page DC, Campbell PJ, Cleveland DW (2019) Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements. Nat Genet 51:705–715PubMedPubMedCentralCrossRefGoogle Scholar
  44. Maciejowski J, Li Y, Bosco N, Campbell PJ, de Lange T (2015) Chromothripsis and Kataegis induced by telomere crisis. Cell 163:1641–1654PubMedPubMedCentralCrossRefGoogle Scholar
  45. Mateos-Gomez PA et al (2015) Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination. Nature 518:254PubMedPubMedCentralCrossRefGoogle Scholar
  46. Meltzer PS, Guan XY, Burgess A, Trent JM (1992) Rapid generation of region specific probes by chromosome microdissection and their application. Nat Genet 1:24–28PubMedCrossRefGoogle Scholar
  47. Mendez-Dorantes C, Bhargava R, Stark JM (2018) Repeat-mediated deletions can be induced by a chromosomal break far from a repeat, but multiple pathways suppress such rearrangements. Genes DevGoogle Scholar
  48. Nathanson DA, Gini B, Mottahedeh J, Visnyei K, Koga T, Gomez G, Eskin A, Hwang K, Wang J, Masui K, Paucar A, Yang H, Ohashi M, Zhu S, Wykosky J, Reed R, Nelson SF, Cloughesy TF, James CD, Rao PN, Kornblum HI, Heath JR, Cavenee WK, Furnari FB, Mischel PS (2014) Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 343:72–76PubMedCrossRefGoogle Scholar
  49. Nguyen K, Puppo F, Roche S, Gaillard MC, Chaix C, Lagarde A, Pierret M, Vovan C, Olschwang S, Salort-Campana E, Attarian S, Bartoli M, Bernard R, Magdinier F, Levy N (2017) Molecular combing reveals complex 4q35 rearrangements in Facioscapulohumeral dystrophy. Hum Mutat 38:1432–1441PubMedCrossRefGoogle Scholar
  50. Ni Y et al (2017) Super-resolution imaging of a 2.5 kb non-repetitive DNA in situ in the nuclear genome using molecular beacon probes. eLife 6:e21660PubMedPubMedCentralCrossRefGoogle Scholar
  51. Nora EP et al (2012) Spatial partitioning of the regulatory landscape of the X-inactivation Centre. Nature 485:381–385PubMedPubMedCentralCrossRefGoogle Scholar
  52. Olsen KE, Knudsen H, Rasmussen BB, Balslev E, Knoop A, Ejlertsen B, Nielsen KV, Schönau A, Overgaard J, Danish Breast Cancer Co-operative Group (2004) Amplification of HER2 and TOP2A and deletion of TOP2A genes in breast cancer investigated by new FISH probes. Acta Oncol 43:35–42PubMedCrossRefGoogle Scholar
  53. Osoegawa K, Mammoser AG, Wu C, Frengen E, Zeng C, Catanese JJ, de Jong PJ (2001) A bacterial artificial chromosome library for sequencing the complete human genome. Genome Res 11:483–496PubMedPubMedCentralCrossRefGoogle Scholar
  54. Pardue ML, Gall JG (1969) Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc Natl Acad Sci U S A 64:600–604PubMedPubMedCentralCrossRefGoogle Scholar
  55. Pierce AJ, Johnson RD, Thompson LH, Jasin M (1999) XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev 13:2633–2638PubMedPubMedCentralCrossRefGoogle Scholar
  56. Potapova TA, Unruh JR, Yu Z, Rancati G, Li H, Stampfer MR, Gerton JL (2019) Superresolution microscopy reveals linkages between ribosomal DNA on heterologous chromosomes. J Cell Biol 218:2492–2513PubMedPubMedCentralCrossRefGoogle Scholar
  57. Raap AK, Florijn RJ, Blonden LAJ, Wiegant J, Vaandrager JW, Vrolijk H, den Dunnen J, Tanke HJ, van Ommen G (1996) Fiber FISH as a DNA mapping tool. Methods 9:67–73PubMedCrossRefGoogle Scholar
  58. Ried T, Schröck E, Ning Y, Wienberg J (1998) Chromosome painting: a useful art. Hum Mol Genet 7:1619–1626PubMedCrossRefGoogle Scholar
  59. Roix JJ, McQueen PG, Munson PJ, Parada LA, Misteli T (2003) Spatial proximity of translocation-prone gene loci in human lymphomas. Nat Genet 34:287–291PubMedCrossRefGoogle Scholar
  60. Roschke A, Ning Y, Smith ACM, Macha M, Precht K, Riethman H, Ledbetter DH, Flint J, Horsley S, Regan R, Kearney L, Knight S, Kvaloy K, Brown WRA (1996) A complete set of human telomeric probes and their clinical application. National Institutes of Health and Institute of Molecular Medicine collaboration. Nat Genet 14:86–89CrossRefGoogle Scholar
  61. Roukos V, Voss TC, Schmidt CK, Lee S, Wangsa D, Misteli T (2013) Spatial dynamics of chromosome translocations in living cells. Science 341:660–664PubMedPubMedCentralCrossRefGoogle Scholar
  62. Roukos V, Burgess RC, Misteli T (2014) Generation of cell-based systems to visualize chromosome damage and translocations in living cells. Nat Protoc 9:2476–2492PubMedPubMedCentralCrossRefGoogle Scholar
  63. Rowley JD (1973) A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243:290–293PubMedCrossRefGoogle Scholar
  64. Rudin CM, Durinck S, Stawiski EW, Poirier JT, Modrusan Z, Shames DS, Bergbower EA, Guan Y, Shin J, Guillory J, Rivers CS, Foo CK, Bhatt D, Stinson J, Gnad F, Haverty PM, Gentleman R, Chaudhuri S, Janakiraman V, Jaiswal BS, Parikh C, Yuan W, Zhang Z, Koeppen H, Wu TD, Stern HM, Yauch RL, Huffman KE, Paskulin DD, Illei PB, Varella-Garcia M, Gazdar AF, de Sauvage FJ, Bourgon R, Minna JD, Brock MV, Seshagiri S (2012) Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet 44:1111–1116PubMedPubMedCentralCrossRefGoogle Scholar
  65. Rudkin GT, Stollar BD (1977) High resolution detection of DNA-RNA hybrids in situ by indirect immunofluorescence. Nature 265:472–473PubMedCrossRefGoogle Scholar
  66. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795PubMedPubMedCentralCrossRefGoogle Scholar
  67. Schnedl W (1971) Banding pattern of human chromosomes. Nat New Biol 233:93–94PubMedCrossRefGoogle Scholar
  68. Schrock E et al (1996) Multicolor spectral karyotyping of human chromosomes. Science 273:494–497PubMedCrossRefGoogle Scholar
  69. Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 2:971–972PubMedCrossRefGoogle Scholar
  70. Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci U S A 89:8794–8797PubMedPubMedCentralCrossRefGoogle Scholar
  71. Solinas-Toldo S, Lampel S, Stilgenbauer S, Nickolenko J, Benner A, Döhner H, Cremer T, Lichter P (1997) Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 20:399–407PubMedCrossRefGoogle Scholar
  72. Speicher MR, Carter NP (2005) The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet 6:782–792PubMedCrossRefGoogle Scholar
  73. Speicher MR, Gwyn Ballard S, Ward DC (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 12:368–375PubMedCrossRefGoogle Scholar
  74. Steinhaeuser U, Starke H, Nietzel A, Lindenau J, Ullmann P, Claussen U, Liehr T (2002) Suspension (S)-FISH, a new technique for interphase nuclei. J Histochem Cytochem 50:1697–1698PubMedCrossRefGoogle Scholar
  75. Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, Pleasance ED, Lau KW, Beare D, Stebbings LA, McLaren S, Lin ML, McBride D, Varela I, Nik-Zainal S, Leroy C, Jia M, Menzies A, Butler AP, Teague JW, Quail MA, Burton J, Swerdlow H, Carter NP, Morsberger LA, Iacobuzio-Donahue C, Follows GA, Green AR, Flanagan AM, Stratton MR, Futreal PA, Campbell PJ (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40PubMedPubMedCentralCrossRefGoogle Scholar
  76. Sugita S, Hasegawa T (2017) Practical use and utility of fluorescence in situ hybridization in the pathological diagnosis of soft tissue and bone tumors. J Orthop Sci 22:601–612PubMedCrossRefGoogle Scholar
  77. Sumner AT, Evans HJ, Buckland RA (1971) New technique for distinguishing between human chromosomes. Nat New Biol 232:31–32PubMedCrossRefGoogle Scholar
  78. Telenius H, Carter NP, Bebb CE, Nordenskjöld M, Ponder BA, Tunnacliffe A (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13:718–725PubMedCrossRefGoogle Scholar
  79. Tjio JH, Levan A (1956) The Chromosome Number of Man. Hereditas 42:1–6CrossRefGoogle Scholar
  80. Tkachuk DC, Westbrook CA, Andreeff M, Donlon TA, Cleary ML, Suryanarayan K, Homge M, Redner A, Gray J, Pinkel D (1990) Detection of bcr-abl fusion in chronic myelogeneous leukemia by in situ hybridization. Science 250:559–562PubMedCrossRefGoogle Scholar
  81. Tosuji H, Mabuchi I, Fusetani N, Nakazawa T (1992) Calyculin a induces contractile ring-like apparatus formation and condensation of chromosomes in unfertilized sea urchin eggs. Proc Natl Acad Sci U S A 89:10613–10617PubMedPubMedCentralCrossRefGoogle Scholar
  82. Trask BJ (2002) Human cytogenetics: 46 chromosomes, 46 years and counting. Nat Rev Genet 3:769–778PubMedCrossRefGoogle Scholar
  83. Turner KM, Deshpande V, Beyter D, Koga T, Rusert J, Lee C, Li B, Arden K, Ren B, Nathanson DA, Kornblum HI, Taylor MD, Kaushal S, Cavenee WK, Wechsler-Reya R, Furnari FB, Vandenberg SR, Rao PN, Wahl GM, Bafna V, Mischel PS (2017) Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature 543:122–125PubMedPubMedCentralCrossRefGoogle Scholar
  84. van der Burg M, Poulsen TS, Hunger SP, Beverloo HB, Smit EM, Vang-Nielsen K, Langerak AW, van Dongen J (2004) Split-signal FISH for detection of chromosome aberrations in acute lymphoblastic leukemia. Leukemia 18:895–908PubMedCrossRefGoogle Scholar
  85. Veldman T, Vignon C, Schrock E, Rowley JD, Ried T (1997) Hidden chromosome abnormalities in haematological malignancies detected by multicolour spectral karyotyping. Nat Genet 15:406–410PubMedCrossRefGoogle Scholar
  86. Verhaak RGW, Bafna V, Mischel PS (2019) Extrachromosomal oncogene amplification in tumour pathogenesis and evolution. Nat Rev Cancer 19:283–288PubMedCrossRefGoogle Scholar
  87. Vorsanova SG, Yurov YB, Iourov IY (2010) Human interphase chromosomes: a review of available molecular cytogenetic technologies. Mol Cytogenet 3:1PubMedPubMedCentralCrossRefGoogle Scholar
  88. Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris MS, Shen N, Kilburn D, Rioux J, Nusbaum C, Rozen S, Hudson TJ, Lipshutz R, Chee M, Lander ES (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280:1077–1082PubMedCrossRefGoogle Scholar
  89. Wang H et al. (2019) CRISPR-mediated live imaging of genome editing and transcription. ScienceGoogle Scholar
  90. Weier H-UG (2001) DNA Fiber mapping techniques for the assembly of high-resolution physical maps. J Histochem Cytochem 49:939–948PubMedCrossRefGoogle Scholar
  91. Weinstock DM, Elliott B, Jasin M (2006) A model of oncogenic rearrangements: differences between chromosomal translocation mechanisms and simple double-strand break repair. Blood 107:777–780PubMedPubMedCentralCrossRefGoogle Scholar
  92. Yunis JJ, Roldan L, Yasmineh WG, Lee JC (1971) Staining of satellite DNA in metaphase chromosomes. Nature 231:532–533PubMedCrossRefGoogle Scholar
  93. Zhang Y, McCord R, Ho YJ, Lajoie BR, Hildebrand DG, Simon AC, Becker MS, Alt FW, Dekker J (2012) Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 148:908–921PubMedPubMedCentralCrossRefGoogle Scholar
  94. Zhang CZ, Spektor A, Cornils H, Francis JM, Jackson EK, Liu S, Meyerson M, Pellman D (2015) Chromothripsis from DNA damage in micronuclei. Nature 522:179–184PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.Department of Pathology, Department of Cell Biology, Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations