Application and prospects of CRISPR/Cas9-based methods to trace defined genomic sequences in living and fixed plant cells
Abstract
The 3D organization of chromatin plays an important role in genome stability and many other pivotal biological programs. Therefore, the establishment of imaging methods, which enable us to study the dynamics of chromatin in living cells, is necessary. Although primary live cell imaging methods were a breakthrough, there is a need to develop more specific labeling techniques. With the discovery of programmable DNA binding proteins, such zinc finger proteins (ZFP), transcription activator-like effectors (TALE), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), a major leap forward was made. Here, we review the applications and potential of fluorescent repressor-operator systems, programmable DNA binding proteins with an emphasis on CRISPR-based chromatin imaging in living and fixed cells, and their potential application in plant science.
Keywords
chromatin dynamics CRISPR/Cas9 FISH live cell imaging RGEN-ISL telomereAbbreviations
- BIFC
Bimolecular fluorescence complementation
- CENH3
Centromere specific histone H3
- CRISPR
Clustered regularly interspaced short palindromic repeats
- Cas9
CRISPR-associated protein 9
- Cys2-His2
Cysteine cysteine-histidine histidine
- crRNA
crisper RNA
- dCas9
dead Cas9
- EdU
5-Ethynyl-2′-deoxyuridine
- FISH
Fluorescence in situ hybridization
- FROS
Fluorescent repressor operator system
- GFP
Green fluorescent protein
- gRNA
guide RNA
- LiveFISH
Live-cell fluorescent in situ hybridization
- Nm
Neisseria meningitides
- TALE
Transcription activator-like effector
- PAM
Protospacer adjacent motif
- PBS
PUF binding site
- PUF
Pumilio/fem-3 mRNA binding factor
- RGEN-ISL
RNA-guided endonuclease-in situ labeling
- RVD
Repeat variable di-residue
- scFv
Single-chain variable fragment antibody
- scFv-GCN4
GCN4 peptide binding single-chain variable fragment antibody
- Sp
Streptococcus pyogenes
- St1
Streptococcus thermophilus
- sgRNA
single guide RNA
- tracr-RNA
Trans-activating RNA
- ZFP
Zinc finger proteins
Notes
Funding information
Cytogenetic research in the author’s laboratory has been supported by Deutsche Forschungsgemeinschaft (DFG) grant HO1779/28-1.
References
- Anton T, Bultmann S, Leonhardt H, Markaki Y (2014) Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system. Nucleus 5:163–172PubMedPubMedCentralCrossRefGoogle Scholar
- Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512PubMedCrossRefGoogle Scholar
- Boettiger AN, Bintu B, Moffitt JR, Wang S, Beliveau BJ, Fudenberg G, Imakaev M, Mirny LA, Wu CT, Zhuang X (2016) Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529:418–422PubMedPubMedCentralCrossRefGoogle Scholar
- Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS, Huang B (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–1491PubMedPubMedCentralCrossRefGoogle Scholar
- Chen H, Choi J, Bailey S (2014) Cut site selection by the two nuclease domains of the Cas9 RNA-guided endonuclease. J Biol Chem 289:13284–13294PubMedPubMedCentralCrossRefGoogle Scholar
- Cryderman DE, Morris EJ, Biessmann H, Elgin SCR, Wallrath LL (1999) Silencing at Drosophila telomeres: nuclear organization and chromatin structure play critical roles. EMBO J 18:3724–3735PubMedPubMedCentralCrossRefGoogle Scholar
- Deng WL, Shi XH, Tjian R, Lionnet T, Singer RH (2015) CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc Natl Acad Sci U S A 112:11870–11875PubMedPubMedCentralCrossRefGoogle Scholar
- Dreissig S, Schiml S, Schindele P, Weiss O, Rutten T, Schubert V, Gladilin E, Mette MF, Puchta H, Houben A (2017) Live-cell CRISPR imaging in plants reveals dynamic telomere movements. Plant J 91:565–573PubMedPubMedCentralCrossRefGoogle Scholar
- Duan J, Lu G, Hong Y, Hu Q, Mai X, Guo J, Si X, Wang F, Zhang Y (2018) Live imaging and tracking of genome regions in CRISPR/dCas9 knock-in mice. Genome Biol 19:192PubMedPubMedCentralCrossRefGoogle Scholar
- Dvorackova M, Rossignol P, Shaw PJ, Koroleva OA, Doonan JH, Fajkus J (2010) AtTRB1, a telomeric DNA-binding protein from Arabidopsis, is concentrated in the nucleolus and shows highly dynamic association with chromatin. Plant J 61:637–649PubMedCrossRefGoogle Scholar
- Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM (2013) Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods 10:1116PubMedPubMedCentralCrossRefGoogle Scholar
- Fu Y, Rocha PP, Luo VM, Raviram R, Deng Y, Mazzoni EO, Skok JA (2016) CRISPR-dCas9 and sgRNA scaffolds enable dual-colour live imaging of satellite sequences and repeat-enriched individual loci. Nat Commun 7:11707PubMedPubMedCentralCrossRefGoogle Scholar
- Fujimoto S, Matsunaga S (2017) Visualization of chromatin loci with transiently expressed CRISPR/Cas9 in plants. Cytologia 82:559–562CrossRefGoogle Scholar
- Fujimoto S, Sugano SS, Kuwata K, Osakabe K, Matsunaga S (2016) Visualization of specific repetitive genomic sequences with fluorescent TALEs in Arabidopsis thaliana. J Exp Bot 67:6101–6110PubMedPubMedCentralCrossRefGoogle Scholar
- Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405PubMedPubMedCentralCrossRefGoogle Scholar
- Germier T, Sylvain A, Silvia K, David L, Kerstin B (2018) Real-time imaging of specific genomic loci in eukaryotic cells using the ANCHOR DNA labelling system. Methods Enzymol 142:16–23CrossRefGoogle Scholar
- Gottschling DE, Aparicio OM, Billington BL, Zakian VA (1990) Position effect at Saccharomyces cerevisiae telomeres - reversible repression of Pol-II transcription. Cell 63:751–762PubMedCrossRefGoogle Scholar
- Gu B, Swigut T, Spencley A, Bauer MR, Chung M, Meyer T, Wysocka J (2018) Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. Science 359:1050–1055PubMedPubMedCentralCrossRefGoogle Scholar
- Hirakawa T, Katagiri Y, Ando T, Matsunaga S (2015) DNA double-strand breaks alter the spatial arrangement of homologous loci in plant cells. Sci Rep 5:11058PubMedPubMedCentralCrossRefGoogle Scholar
- Hong Y, Lu G, Duan J, Liu W, Zhang Y (2018) Comparison and optimization of CRISPR/dCas9/gRNA genome-labeling systems for live cell imaging. Genome Biol 19:39PubMedPubMedCentralCrossRefGoogle Scholar
- Ishii T, Schubert V, Khosravi S, Dreissig S, Metje-Sprink J, Sprink T, Fuchs J, Meister A, Houben A (2019) RNA-guided endonuclease - in situ labelling (RGEN-ISL): a fast CRISPR/Cas9-based method to label genomic sequences in various species. New Phytol 222:1652–1661PubMedPubMedCentralCrossRefGoogle Scholar
- Jovtchev G, Watanabe K, Pecinka A, Rosin FM, Mette MF, Lam E, Schubert I (2008) Size and number of tandem repeat arrays can determine somatic homologous pairing of transgene loci mediated by epigenetic modifications in Arabidopsis thaliana nuclei. Chromosoma 117:267–276PubMedCrossRefGoogle Scholar
- Jovtchev G, Borisova B, Kuhlmann M, Fuchs J, Watanabe K, Schubert I, Mette MF (2011) Pairing of lacO tandem repeats in Arabidopsis thaliana nuclei requires the presence of hypermethylated, large arrays at two chromosomal positions, but does not depend on H3-lysine-9-dimethylation. Chromosoma 120:609–619PubMedCrossRefGoogle Scholar
- Kato L (2001) Detection of chromosomes tagged with green fluorescent protein in live Arabidopsis thaliana plants. Genome Biol:2Google Scholar
- Knight SC, Tjian R, Doudna JA (2018) Genomes in focus: development and applications of CRISPR-Cas9 imaging technologies. Angew Chem 57:4329–4337CrossRefGoogle Scholar
- Koo DH, Zhao HN, Jiang JM (2016) Chromatin‐associated transcripts of tandemly repetitive DNA sequences revealed by RNA‐FISH. Chromosome Res 24:467–480PubMedCrossRefGoogle Scholar
- Kozubek S, Lukasova E, Amrichova J, Kozubek M, Liskova A, Slotova J (2000) Influence of cell fixation on chromatin topography. Anal Biochem 282:29–38PubMedCrossRefGoogle Scholar
- Lane AB, Strzelecka M, Ettinger A, Grenfell AW, Wittmann T, Heald R (2015) Enzymatically generated CRISPR libraries for genome labeling and screening. Dev Cell 34:373–378PubMedPubMedCentralCrossRefGoogle Scholar
- Lassadi I, Kamgoué A, Goiffon I, Tanguy-le-Gac N, KB (2015) Differential chromosome conformations as hallmarks of cellular identity revealed by mathematical polymer modeling. PLoS Comput Biol:1–21Google Scholar
- Lindhout BI, Fransz P, Tessadori F, Meckel T, Hooykaas PJJ, Zaal BJ (2007) Live cell imaging of repetitive DNA sequences via GFP-tagged polydactyl zinc finger proteins. Nucleic Acids Res 35:e107PubMedPubMedCentralCrossRefGoogle Scholar
- Liu Q, Segal DJ, Ghiara JB, CFB (1997) Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc Natl Acad Sci U S A 94:5525–5530PubMedPubMedCentralCrossRefGoogle Scholar
- Ma H, Reyes-Gutierrez P, Pederson T (2013) Visualization of repetitive DNA sequences in human chromosomes with transcription activator-like effectors. Proc Natl Acad Sci U S A 110Google Scholar
- Ma HNA, Reyes-Gutierreza P, Wolfec SA, Zhangb S, Pedersona T (2015) Multicolor CRISPR labeling of chromosomal loci in human cells. PNAS 112:3002–3007PubMedCrossRefGoogle Scholar
- Ma H, Tu LC, Naseri A, Huisman M, Zhang S, Grunwald D, Pederson T (2016) Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat Biotechnol 34:528–530PubMedPubMedCentralCrossRefGoogle Scholar
- Maass PG, Barutcu AR, Shechner DM, Weiner CL, Melé M, Rinn JL (2018) Spatiotemporal allele organization by allele-specific CRISPR live-cell imaging (SNP-CLING). Nat Struct Mol Biol 25:176–184PubMedPubMedCentralCrossRefGoogle Scholar
- Mak AN-S, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335:716–719PubMedPubMedCentralCrossRefGoogle Scholar
- Mariamé B, Kappler-Gratias S, Kappler M, Balor S, Gallardo F, Bystricky K (2018) Real-time visualization and quantification of human cytomegalovirus replication in living cells using the ANCHOR DNA labeling technology. J Virol 92:e00571–e00518PubMedPubMedCentralCrossRefGoogle Scholar
- Matzke AJM, Huettel B, van der Winden J, Matzke M (2005) Use of two-color fluorescence-tagged transgenes to study interphase chromosomes in living plants. Plant Physiol 139:1586–1596PubMedPubMedCentralCrossRefGoogle Scholar
- Miller J, McLachlan AD, Klug A (1985) Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4:1609–1614PubMedPubMedCentralCrossRefGoogle Scholar
- Miyanari Y, Ziegler-Birling C, Torres-Padilla M-E (2013) Live visualization of chromatin dynamics with fluorescent TALEs. Nat Struct 20:1321–1324CrossRefGoogle Scholar
- Němečková A, Wäsch C, Schubert V, Ishii T, Hřibová E, Houben A (2019) CRISPR/Cas9-based RGEN-ISL allows the simultaneous and specific visualization of proteins, DNA repeats and sites of. DNA replication, Cytogenetic and Genome Research (in press)CrossRefGoogle Scholar
- Nimmo ER, Cranston G, Allshire RC (1994) Telomere-associated chromosome breakage in fission yeast results in variegated expression of adjacent genes. EMBO J 13:3801–3811PubMedPubMedCentralCrossRefGoogle Scholar
- Pecinka A, Kato N, Meister A, Probst AV, Schubert I, Lam E (2005) Tandem repetitive transgenes and fluorescent chromatin tags alter local interphase chromosome arrangement in Arabidopsis thaliana. J Cell Sci 118:3751–3758PubMedCrossRefGoogle Scholar
- Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183PubMedPubMedCentralCrossRefGoogle Scholar
- Qin P, Parlak M, Kuscu C, Bandaria J, Mir M, Szlachta K, Singh R, Darzacq X, Yildiz A, Adli M (2017) Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9. Nat Commun 8:14725PubMedPubMedCentralCrossRefGoogle Scholar
- Robinett CC, Straight AF, Li GW, Willhelm C, Sudlow G, Murray A, Belmont AS (1996) In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol 135:1685–1700PubMedCrossRefGoogle Scholar
- Rosin FM, Watanabe N, Cacas J, Kato N, Arroyo JM, Fang Y, May B, Vaughn M, Simorowski J, Ramu U, McCombie RW, Spector DL, Martienssen RA, Lam E (2008) Genome-wide transposon tagging reveals location-dependent effects on transcription and chromatin organization in Arabidopsis. Plant JGoogle Scholar
- Saad H, GallardoF DM, Tanguy-le-Gac N, Lane D, KB (2014) DNA dynamics during early double-strand break processing revealed by non-intrusive imaging of living cells. PLoS Genet:10Google Scholar
- Sanjana NE, Cong L, Zhou Y, Cunniff MM, Feng G, Zhang F (2012) A transcription activator-like effector toolbox for genome engineering. Nat Protoc 7:171–192PubMedPubMedCentralCrossRefGoogle Scholar
- Schrumpfova PP, Schorova S, Fajkus J (2016) Telomere- and telomerase-associated proteins and their functions in the plant cell. Front Plant Sci:7Google Scholar
- Schubert I, Shaw P (2011) Organization and dynamics of plant interphase chromosomes. Trends Plant Sci 16:273–281PubMedCrossRefGoogle Scholar
- Shao S, Zhang W, Hu H, Xue B, Qin J, Sun C, Sun Y, Wei W, Sun Y (2016) Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system. Nucleic Acids Res 44:e86PubMedPubMedCentralCrossRefGoogle Scholar
- Steinert J, Schiml S, Fauser F, Puchta H (2015) Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. Plant J 84:1295–1305PubMedCrossRefGoogle Scholar
- Stella S, Molina R, Yefimenko I, Prieto J, Silva G, Bertonati C, Juillerat A, Duchateau P, Montoya G (2013) Structure of the AvrBs3-DNA complex provides new insights into the initial thymine-recognition mechanism. Acta Crystallogr Sect D 69:1707–1716CrossRefGoogle Scholar
- Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Valle RD (2014) A protein tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635PubMedPubMedCentralCrossRefGoogle Scholar
- van Tol N, Rolloos M, Hooykaas PJJ, van der Zaal BJ (2019) Two novel strategies to assess meiotic protein in vivo expression in Arabidopsis thaliana. F1000Research 8Google Scholar
- Wang S, Su JH, Zhang F, Zhuang X (2016) An RNA-aptamer-based two-color CRISPR labeling system. Sci Rep 6:26857PubMedPubMedCentralCrossRefGoogle Scholar
- Wang H, Nakamura M, Abbott TR, Zhao D, Luo A, Yu C, Nguyen CM, Lo A, Daley T, La Russa M, Liu Y, Qi LS (2019a) CRISPR-mediated live imaging of genome editing and transcription. Science 365:1301–1305PubMedCrossRefGoogle Scholar
- Wang S, Hao Y, Zhang L, Wang F, Li J, Wang L, Fan C (2019b) Multiplexed superresolution CRISPR imaging of chromatin in living cells. CCS Chemistry 1:278–285CrossRefGoogle Scholar
- Wienert B, Wyman SK, Richardson CD, Yeh CD, Akcakaya P, Porritt MJ, Morlock M, Vu JT, Kazane KR, Watry HL, Judge LM, Conklin BR, Maresca M, Corn JE (2019) Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science 364:286-289.Wu X., Mao Sh., Ying Y., Ch. K, Chen A.K. (2019) Progress and challenges for live-cell imaging of genomic loci using CRISPR-based platforms. Genomics, Proteomics & Bioinformatics 17: 119–128Google Scholar
- Wu X, Mao Sh, Ying Y, ChK, Chen AK (2019) Progress and challenges for live-cell imaging of genomic loci using CRISPR-based platforms. Genomics, Proteomics & Bioinformatics 17:119–128Google Scholar
- Xue Y, Murat A (2018) Live-cell imaging of chromatin condensation dynamics by CRISPR. Cell press 4:216–235Google Scholar
- Ye H, Rong Z, Lin Y (2017) Live cell imaging of genomic loci using dCas9-SunTag system and a bright fluorescent protein. Protein CellGoogle Scholar
- Zhang S, Song Z (2017) Aio-Casilio: a robust CRISPR-Cas9-Pumilio system for chromosome labeling. J Mol Histol 48:293–299PubMedCrossRefGoogle Scholar