Chromosome Research

, Volume 27, Issue 4, pp 299–311 | Cite as

Identification of passion fruit (Passiflora edulis) chromosomes using BAC-FISH

  • M. A. Sader
  • Y. Dias
  • Z. P. Costa
  • C. Munhoz
  • H. Penha
  • H. Bergès
  • M. L. C. Vieira
  • Andrea Pedrosa-HarandEmail author
Original Article


Passiflora edulis, the yellow passion fruit, is the main crop from the Passiflora genus, which comprises 525 species with its diversity center in South America. Genetic maps and a BAC (bacterial artificial chromosome) genomic library are available, but the nine chromosome pairs of similar size and morphology (2n = 18) hamper chromosome identification, leading to different proposed karyotypes. Thus, the aim of this study was to establish chromosome-specific markers for the yellow passion fruit using single-copy and repetitive sequences as probes in fluorescent in situ hybridizations (FISH) to allow chromosome identification and future integration with whole genome data. Thirty-six BAC clones harboring genes and three retrotransposons (Ty1-copy, Ty3-gypsy, and LINE) were selected. Twelve BACs exhibited a dispersed pattern similar to that revealed by retroelements, and one exhibited subtelomeric distribution. Twelve clones showed unique signals in terminal or subterminal regions of the chromosomes, allowing their genes to be anchored to six chromosome pairs that can be identified with single-copy markers. The markers developed herein will provide an important tool for genomic and evolutionary studies in the Passiflora genus.


Bacterial artificial chromosome (BAC) Fluorescent in situ hybridization (FISH) Karyotype Cytogenetic map Repetitive DNA sequences Retrotransposon 



Bacterial artificial chromosomes


Fluorescent in situ hybridizations


Active nucleolar organizer regions


Chromomycin A3




Ribosomal DNA


Transposable elements


Microsatellite sequences


Polymerase chain reaction


Saline–sodium citrate buffer


Sodium dodecyl sulfate


5-Amino-propargyl-2′-deoxyuridine 5′-triphosphate coupled to red cyanine fluorescent dye


Alexa Fluor 488


Fluorescein isothiocyanate


Bovine serum albumin


Long interspersed nuclear element



We thank Mr. Steve Simmons for proofreading the manuscript.

Author contribution

MAS and APH conceived and designed the research. HB, HP, and MLCV contributed to BAC library, plant material, and bioinformatic data. MAS and YD conducted the experiments. CM, MAS, YD, and ZPC analyzed the data. MAS and APH wrote the manuscript. All authors read and approved the manuscript.

Funding information

The authors received financial support from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico). Scholarships from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) were awarded to MA Sader, ZP Costa, and A. Pedrosa-Harand. This study was supported in part by the Coordenacão de Aperfeicoamento de Pessoal de Nível Superior - Brasil (CAPES, Finance Code 001), and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP grant no. 2014/25215-2).

Supplementary material

10577_2019_9614_Fig4_ESM.png (8.6 mb)
Figure S1

Fluorescent in situ hybridization to P. edulis chromosomes. (a) BAC Pe134H15 (red); (b) Pe164A12 (red) and 35S rDNA (green); (c) BAC Pe173B16 (green) and Pe164M13 (red); (d) BAC Pe195F4 (red) and 35S rDNA (green); (e) BAC Pe173B16 (red) and 35S rDNA (green). Chromosomes were counterstained with DAPI, are visualized in grey and indicated by number. BACs were labeled with Cy3-dUTP and pseudocolored. Bar = 5 μm. (PNG 8848 kb)

10577_2019_9614_MOESM1_ESM.tif (19.9 mb)
High resolution image (TIF 20376 kb)
10577_2019_9614_MOESM2_ESM.docx (22 kb)
ESM 1 (DOCX 22 kb)


  1. Araya S, Martins AM, Junqueira NT, Costa AM, Faleiro FG, Ferreira ME (2017) Microsatellite marker development by partial sequencing of the sour passion fruit genome (Passiflora edulis Sims). BMC Genomics 18:549. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bennetzen JL, Wang H (2014) The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol 65:505–530. CrossRefPubMedGoogle Scholar
  3. Bernacci LC, Cervi AC, Milward-de-Azevedo MA, Nunes TS, Imig DC, Mezzonato AC (2015) Passifloraceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. Disponível em: <>. Accessed August 2017
  4. Cabral JS, Felix LP, Guerra M (2006) Heterochromatin diversity and its co-localization with 5S and 45S rDNA sites in chromosomes of four Maxillaria species (Orchidaceae). Genet Mol Biol 29:659–664. CrossRefGoogle Scholar
  5. Carneiro MS, Camargo LEA, Coelho ASG, Vencovsky R, Júnior RPL, Stenzel NMC, Vieira MLC (2002) RAPD-based genetic linkage maps of yellow passion fruit (Passiflora edulis Sims. f. flavicarpa Deg.). Genome 45:670–678. CrossRefPubMedGoogle Scholar
  6. Cheng ZJ, Murata M (2003) A centromeric tandem repeat family originating from a part of Ty3/gypsy-retroelement in wheat and its relatives. Genetics 164:665–672PubMedPubMedCentralGoogle Scholar
  7. Cheng Z, Buell CR, Wing RA, Gu M, Jiang J (2001) Toward a cytological characterization of the rice genome. Genome Res 11:2133–2141. CrossRefGoogle Scholar
  8. Costa ZP (2018) Estudos genômicos em Passiflora edulis (Passifloraceae). Tese, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São PauloGoogle Scholar
  9. Cuco SM, Vieira MLC, Mondin M, Aguiar-Perecin MLR (2005) Comparative karyotype analysis of three Passiflora L. species and cytogenetic characterization of somatic hybrids. Caryologia 58:220–228. CrossRefGoogle Scholar
  10. De Carvalho CR, Saraiva LS (1993) An air drying technique for maize chromosomes without enzymatic maceration. Biotech Histochem 68:142–145. CrossRefPubMedGoogle Scholar
  11. Dhar MK, Fuchs J, Houben A (2009) Distribution of eu and heterochromatin in Plantago ovata. Cytogenet Genome Res 125:235–240. CrossRefPubMedGoogle Scholar
  12. Dong F, Song J, Naess SK, Helgeson JP, Gebhardt C, Jiang J (2000) Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theor Appl Genet 101:1001–1007. CrossRefGoogle Scholar
  13. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  14. Feuillet C, MacDougal JM (2003) A new infrageneric classification of Passiflora L. (Passifloraceae). Passiflora 13:34–38Google Scholar
  15. Fonsêca A, Ferreira J, dos Santos TRB, Mosiolek M, Bellucci E, Kami J, Gepts P, Geffroy V, Schweizer D, dos Santos KGB, Pedrosa-Harand A (2010) Cytogenetic map of common bean (Phaseolus vulgaris L.). Chromosom Res 18:487–502. CrossRefGoogle Scholar
  16. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885CrossRefGoogle Scholar
  17. Guerra M (1986) Reviewing the chromosome nomenclature of Levan et al. Braz J Genet 9:741–743Google Scholar
  18. Hansen AK, Gilbert LE, Simpson BB, Downie SR, Cervi AC, Jansen RK (2006) Phylogenetic relationships and chromosome number evolution in Passiflora. Syst Bot 31:138–150. CrossRefGoogle Scholar
  19. Heslop-Harrison JS, Harrison GE, Leitch IJ (1992) Reprobing of DNA: DNA in situ hybridization preparations. Trends Genet 8:372–373. CrossRefPubMedGoogle Scholar
  20. Jiang J, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068. CrossRefPubMedGoogle Scholar
  21. Judd WS, Campbell CS, Kellogg EA, Stevens PF, Donoghue MJ (2016) Plant systematics: a phylogenetic approach, 4th ed. Sinauer Associates, SunderlandGoogle Scholar
  22. Koumbaris GL, Bass HW (2003) A new single-locus cytogenetic mapping system for maize (Zea mays L.): overcoming FISH detection limits with marker-selected sorghum (S. propinquum L.) BAC clones. Plant J 35:647–359. CrossRefPubMedGoogle Scholar
  23. Krosnick SE, Ford AJ, Freudenstein JV (2009) Taxonomic revision of Passiflora subgenus Tetrapathea including the monotypic genera Hollrungia and Tetrapathea (Passifloraceae), and a new species of Passiflora. Syst Bot 34:375–385. CrossRefGoogle Scholar
  24. Lopes R, Lopes MTG, Carneiro M et al (2006) Linkage and mapping of resistance genes to Xanthomonas axonopodis pv. Passiflorae in yellow passion fruit. Genome 49:17–29. CrossRefPubMedGoogle Scholar
  25. Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci 103:5224–5229. CrossRefPubMedGoogle Scholar
  26. Mayeda LY (1997) Estudo citogenético em dez taxons do gênero Passiflora L. (Passifloraceae). Dissertação, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São PauloGoogle Scholar
  27. Melo NF, Guerra M (2003) Variability of the 5S and 45S rDNA sites in Passiflora L. species with distinct base chromosome numbers. Ann Bot 92:309–316. CrossRefPubMedGoogle Scholar
  28. Melo NF, Cervi AC, Guerra M (2001) Karyology and cytotaxonomy of the genus Passiflora L. (Passifloraceae). Plant Syst Evol 226:69–84. CrossRefGoogle Scholar
  29. Men AE, Meksem K, Kassem MA, Lohar D, Stiller J, Lightfoot D, Gresshoff PM (2001) A bacterial artificial chromosome library of Lotus japonicus constructed in an Agrobacterium tumefaciens-transformable vector. Mol Plant-Microbe Interact 14:422–425. CrossRefPubMedGoogle Scholar
  30. Munhoz CF, Santos AA, Arenhart RA, Santini L, Monteiro-Vitorello CB, Vieira MLC (2015) Analysis of plant gene expression during passion fruit–Xanthomonas axonopodis interaction implicates lipoxygenase 2 in host defence. Ann Appl Biol 167:135–155. CrossRefGoogle Scholar
  31. Munhoz CF, Costa ZP, Cauz-Santos LA, Reátegui ACE, Rodde N, Cauet S, Dornelas MC, Leroy P, Varani AM, Bergès H, Vieira MLC (2018) A gene-rich fraction analysis of the Passiflora edulis genome reveals highly conserved microsyntenic regions with two related Malpighiales species. Sci Rep 8:13024. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Muschner VC, Zamberlan PM, Bonatto SL, Freitas LB (2012) Phylogeny, biogeography and divergence times in Passiflora (Passifloraceae). Genet Mol Biol 35:1036–1043. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Nagaki K, Neumann P, Zhang D, Ouyang S, Buell CR, Cheng Z, Jiang J (2004) Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice. Mol Biol Evol 22:845–855. CrossRefPubMedGoogle Scholar
  34. Oliveira AM (1996) Reprodução e citogenética de espécies de Passiflora. Tese,  Universidade Estadual Paulista São José do Rio PretoGoogle Scholar
  35. Oliveira EJ, Vieira MLC, Garcia AAF, Munhoz CF, Margarido GRA, Consoli L, Matta FP, Moraes MC, Zucchi MI, Fungaro MHP (2008) An integrated molecular map of yellow passion fruit based on simultaneous maximum-likelihood estimation of linkage and linkage phases. J Am Soc Hortic Sci 133:35–41. CrossRefGoogle Scholar
  36. Paesold S, Borchardt D, Schmidt T, Dechyeva D (2012) A sugar beet (Beta vulgaris L.) reference FISH karyotype for chromosome and chromosome-arm identification, integration of genetic linkage groups and analysis of major repeat family distribution. Plant J 72:600–611. CrossRefPubMedGoogle Scholar
  37. Pamponét VCC, Souza MM, Silva GS, Micheli F, de Melo CAF, de Oliveira SG, Costa EA, Corrêa RX (2019) Low coverage sequencing for repetitive DNA analysis in Passiflora edulis Sims: citogenomic characterization of transposable elements and satellite DNA. BMC Genomics 20:262. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Pedrosa A, Sandal N, Stougaard J, Schweizer D, Bachmair A (2002) Chromosomal map of the model legume Lotus japonicus. Genetics 161:1661–1672PubMedPubMedCentralGoogle Scholar
  39. Peterson DG, Tomkins JP, Frisch DA, Wing RA, Paterson AH (2000) Construction of plant bacterial artificial chromosome (BAC) libraries: an illustrated guide. J Agric Genomics 5:1–100Google Scholar
  40. Praça MM, Carvalho CR, Francismar CM, Correa MMA (2008) Morphological aspects of Passiflora edulis f. flavicarpa chromosomes using acridine orange banding and rDNA-FISH tools. Caryologia 61:154–159. CrossRefGoogle Scholar
  41. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  42. Rudnicki M, Silveira MM, Pereira TV, Oliveira MR, Reginatto FH, Dal-Pizzol F, Moreira JCF (2007) Protective effects of Passiflora alata extract pretreatment on carbon tetrachloride induced oxidative damage in rats. Food Chem Toxicol 45:656–661. CrossRefPubMedGoogle Scholar
  43. Santos AA, Penha HA, Bellec A, Munhoz C, Pedrosa-Harand A, Bergès H, Vieira ML (2014) Begin at the beginning: a BAC-end view of the passion fruit (Passiflora) genome. BMC Genomics 15:816. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Soares-Scott, MD (1998) Caracterização citogenetica de algumas especies e hibridos interespecificos de Passiflora Dissertação, Universidade Estadual de Campinas. Disponível em: <>. Accessed 23 July 2018
  45. Soares-Scott MD, Meletti LMM, Bernacci LC, Passos IRS (2005) Citogenética clássica e molecular em passifloras. In: Maracujá: Germoplasma e Melhoramento Genético; Faleiro, F.G., Junqueira, N.T.V., Braga, M.F., eds.; Embrapa Cerrados: Planaltina, Brazil, pp. 210–240Google Scholar
  46. Souza MM, Palomino G, Pereira TNS, Pereira MG, Viana AP (2004) Flow cytometric analysis of genome size variation in some Passiflora species. Hereditas 141:31–38. CrossRefPubMedGoogle Scholar
  47. Stack SM, Royer SM, Shearer LA, Chang SB, Giovannoni JJ, Westfall DH, White RA, Anderson LK (2009) Role of fluorescence in situ hybridization in sequencing the tomato genome. Cytogenet Genome Res 124:339–350. CrossRefPubMedGoogle Scholar
  48. Ulmer T, MacDougal JM (2004) Passiflora: passionflowers of the world. Timber Press, Portland-Cambridge, 430Google Scholar
  49. Viana AJC, Souza MM (2012) Comparative cytogenetics between the species Passiflora edulis and Passiflora cacaoensis. Plant Biol 14:820–827. CrossRefPubMedGoogle Scholar
  50. Wang K, Guan B, Guo W (2008) Completely distinguishing individual A-genome chromosomes and their karyotyping analysis by multiple bacterial artificial chromosome fluorescence in-situ hybridization. Genetics 178:1117–1122. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Wu C, Sun S, Nimmakayala P, Santos FA, Meksem K, Springman R, Ding K, Lightfoot DA, Zhang HB (2004) A BAC- and BIBAC-based physical map of the soybean genome. Genome Res 14:319–326. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Yotoko KSC, Dornelas MC, Togni PD, Fonseca TC, Salzano FM, Bonatto SL, Freitas LB (2011) Does variation in genome sizes reflect adaptive or neutral processes? New clues from Passiflora. PLoS One 6:e18212. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of BotanyFederal University of PernambucoRecifeBrazil
  2. 2.Department of Genetics, “Luiz de Queiroz” College of AgricultureUniversity of São PauloPiracicabaBrazil
  3. 3.Department of Technology, Faculty of Agricultural and Veterinary SciencesSão Paulo State University (UNESP)JaboticabalBrazil
  4. 4.French Plant Genomic Resources Center (CNRGV)/ INRAToulouseFrance
  5. 5.Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de BiociênciasUniversidade Federal de PernambucoRecifeBrazil

Personalised recommendations