Advertisement

Chromosome Research

, Volume 27, Issue 3, pp 167–178 | Cite as

MiR-153 regulates cardiomyocyte apoptosis by targeting Nrf2/HO-1 signaling

  • Xianting Zhu
  • Yuling Zhao
  • Wei Hou
  • Ling GuoEmail author
Original Article

Abstract

MicroRNAs (miRNAs) play various roles in the regulation of human disease, including cardiovascular diseases. MiR-153 has been previously shown to be involved in regulating neuron survival during cerebral ischemia/reperfusion (I/R) injury. However, whether miR-153 is involved in I/R-induced cardiomyocyte apoptosis remains to be elucidated. In this study, we aimed to explore the role of miR-153 in the regulation of I/R-induced cardiomyocyte apoptosis and to investigate the miR-153-mediated molecular signaling pathway responsible for its effect on cardiomyocytes using an oxygen-glucose deprivation and reoxygenation (OGD/R) cellular model. We found that OGD/R treatment induced significant upregulation of miR-153 in cardiomyocytes causing reactive oxygen species (ROS) production and cell apoptosis signaling activation and subsequently leading to cardiomyocyte apoptosis. Suppression of miR-153 protected cardiomyocytes against OGD/R treatment. We further identified that nuclear factor-like 2 (Nrf2) is a functional target of miR-153. Nrf2/ heme oxygenase-1 (HO-1) signaling plays a critical role in miR-153 regulated OGD/R-induced cardiomyocyte apoptosis. Our study indicates that the inhibition of miR-153 or restoration of Nrf2 may serve as a potential therapeutic strategy for ischemia/reperfusion injury prevention.

Keywords

Ischemia/reperfusion miR-153 Nrf2 Cardiomyocytes Apoptosis 

Abbreviations

I/R

Ischemia/reperfusion

OGD/R

Oxygen-glucose deprivation and reoxygenation

Nrf2

Nuclear factor-like 2

Notes

Authors’ contributions

XTZ and YLZ were contributed equally to this work. Conception and design: XTZ, YLZ, and WH. Collection and assembly of data: YLZ and WH. Data analysis and interpretation: YLZ and WH. Contribution of reagents, materials, and analysis tools wrote the paper: LG. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This study was approved by the Ethics Committee of the Yidu Central Hospital of Wei Fang.

Informed consent

Not applicable.

References

  1. Alam J, Stewart D, Touchard C, Boinapally S, Choi AMK, Cook JL (1999) Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem 274:26071–26078CrossRefGoogle Scholar
  2. Boon RA, Dimmeler S (2015) MicroRNAs in myocardial infarction. Nat Rev Cardiol 12:135–142CrossRefGoogle Scholar
  3. Brakenhielm E, Alitalo K (2019) Cardiac lymphatics in health and disease. Nat Rev Cardiol 16:56–68CrossRefGoogle Scholar
  4. Callis TE, Pandya K, Seok HY, Tang RH, Tatsuguchi M, Huang ZP, Chen JF, Deng Z, Gunn B, Shumate J, Willis MS, Selzman CH, Wang DZ (2009) MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 119:2772–2786CrossRefGoogle Scholar
  5. Cannon RO 3rd (2005) Mechanisms, management and future directions for reperfusion injury after acute myocardial infarction. Nat Clin Pract Cardiovasc Med 2:88–94CrossRefGoogle Scholar
  6. Cervellin G, Rastelli G (2016) The clinics of acute coronary syndrome. Ann Transl Med 4:191CrossRefGoogle Scholar
  7. Cheng Y, Zhu P, Yang J, Liu X, Dong S, Wang X, Chun B, Zhuang J, Zhang C (2010) Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res 87:431–439CrossRefGoogle Scholar
  8. Crea F, Libby P (2017) Acute coronary syndromes: the way forward from mechanisms to precision treatment. Circulation 136:1155–1166CrossRefGoogle Scholar
  9. Cuadrado A, Rojo AI, Wells G, Hayes JD, Cousin SP, Rumsey WL, Attucks OC, Franklin S, Levonen AL, Kensler TW, Dinkova-Kostova AT (2019) Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov 18:295–317CrossRefGoogle Scholar
  10. Fang J, Song XW, Tian J, Chen HY, Li DF, Wang JF, Ren AJ, Yuan WJ, Lin L (2012) Overexpression of microRNA-378 attenuates ischemia-induced apoptosis by inhibiting caspase-3 expression in cardiac myocytes. Apoptosis 17:410–423CrossRefGoogle Scholar
  11. Gounder SS, Kannan S, Devadoss D, Miller CJ, Whitehead KS, Odelberg SJ, Firpo MA, Paine R, Hoidal JR, Abel ED, Rajasekaran NS (2012) Impaired transcriptional activity of Nrf2 in age-related myocardial oxidative stress is reversible by moderate exercise training. PLoS One 7:e45697CrossRefGoogle Scholar
  12. Ji Q, Gao J, Zheng Y, Liu X, Zhou Q, Shi C, Yao M, Chen X (2017) Inhibition of microRNA-153 protects neurons against ischemia/reperfusion injury in an oxygen-glucose deprivation and reoxygenation cellular model by regulating Nrf2/HO-1 signaling. J Biochem Mol Toxicol 31Google Scholar
  13. Li J, Ichikawa T, Villacorta L, Janicki JS, Brower GL, Yamamoto M, Cui T (2009) Nrf2 protects against maladaptive cardiac responses to hemodynamic stress. Arterioscler Thromb Vasc Biol 29:1843–1850CrossRefGoogle Scholar
  14. Li W, Zhai L, Zhao C, Lv S (2015) MiR-153 inhibits epithelial-mesenchymal transition by targeting metadherin in human breast cancer. Breast Cancer Res Treat 150:501–509CrossRefGoogle Scholar
  15. Ma Q (2013) Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426CrossRefGoogle Scholar
  16. Mutharasan RK, Nagpal V, Ichikawa Y, Ardehali H (2011) microRNA-210 is upregulated in hypoxic cardiomyocytes through Akt- and p53-dependent pathways and exerts cytoprotective effects. Am J Physiol Heart Circ Physiol 301:H1519–H1530CrossRefGoogle Scholar
  17. Qin Q, Qu C, Niu T, Zang H, Qi L, Lyu L, Wang X, Nagarkatti M, Nagarkatti P, Janicki JS, Wang XL, Cui T (2016) Nrf2-mediated cardiac maladaptive remodeling and dysfunction in a setting of autophagy insufficiency. Hypertension 67:107–117CrossRefGoogle Scholar
  18. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, Ahmed M, Aksut B, Alam T, Alam K, Alla F, Alvis-Guzman N, Amrock S, Ansari H, Ärnlöv J, Asayesh H, Atey TM, Avila-Burgos L, Awasthi A, Banerjee A, Barac A, Bärnighausen T, Barregard L, Bedi N, Belay Ketema E, Bennett D, Berhe G, Bhutta Z, Bitew S, Carapetis J, Carrero JJ, Malta DC, Castañeda-Orjuela CA, Castillo-Rivas J, Catalá-López F, Choi JY, Christensen H, Cirillo M, Cooper L Jr, Criqui M, Cundiff D, Damasceno A, Dandona L, Dandona R, Davletov K, Dharmaratne S, Dorairaj P, Dubey M, Ehrenkranz R, el Sayed Zaki M, Faraon EJA, Esteghamati A, Farid T, Farvid M, Feigin V, Ding EL, Fowkes G, Gebrehiwot T, Gillum R, Gold A, Gona P, Gupta R, Habtewold TD, Hafezi-Nejad N, Hailu T, Hailu GB, Hankey G, Hassen HY, Abate KH, Havmoeller R, Hay SI, Horino M, Hotez PJ, Jacobsen K, James S, Javanbakht M, Jeemon P, John D, Jonas J, Kalkonde Y, Karimkhani C, Kasaeian A, Khader Y, Khan A, Khang YH, Khera S, Khoja AT, Khubchandani J, Kim D, Kolte D, Kosen S, Krohn KJ, Kumar GA, Kwan GF, Lal DK, Larsson A, Linn S, Lopez A, Lotufo PA, el Razek HMA, Malekzadeh R, Mazidi M, Meier T, Meles KG, Mensah G, Meretoja A, Mezgebe H, Miller T, Mirrakhimov E, Mohammed S, Moran AE, Musa KI, Narula J, Neal B, Ngalesoni F, Nguyen G, Obermeyer CM, Owolabi M, Patton G, Pedro J, Qato D, Qorbani M, Rahimi K, Rai RK, Rawaf S, Ribeiro A, Safiri S, Salomon JA, Santos I, Santric Milicevic M, Sartorius B, Schutte A, Sepanlou S, Shaikh MA, Shin MJ, Shishehbor M, Shore H, Silva DAS, Sobngwi E, Stranges S, Swaminathan S, Tabarés-Seisdedos R, Tadele Atnafu N, Tesfay F, Thakur JS, Thrift A, Topor-Madry R, Truelsen T, Tyrovolas S, Ukwaja KN, Uthman O, Vasankari T, Vlassov V, Vollset SE, Wakayo T, Watkins D, Weintraub R, Werdecker A, Westerman R, Wiysonge CS, Wolfe C, Workicho A, Xu G, Yano Y, Yip P, Yonemoto N, Younis M, Yu C, Vos T, Naghavi M, Murray C (2017) Global, regional, and National Burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol 70:1–25CrossRefGoogle Scholar
  19. Satta S, Mahmoud AM, Wilkinson FL, Yvonne Alexander M, White SJ (2017) The role of Nrf2 in cardiovascular function and disease. Oxidative Med Cell Longev 2017:9237263CrossRefGoogle Scholar
  20. Sun T, Dong YH, Du W et al (2017) The role of MicroRNAs in myocardial infarction: from molecular mechanism to clinical application. Int J Mol Sci 18Google Scholar
  21. Theodore M, Kawai Y, Yang J, Kleshchenko Y, Reddy SP, Villalta F, Arinze IJ (2008) Multiple nuclear localization signals function in the nuclear import of the transcription factor Nrf2. J Biol Chem 283:8984–8994CrossRefGoogle Scholar
  22. Van Rooij E, Marshall WS, Olson EN (2008) Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ Res 103:919–928CrossRefGoogle Scholar
  23. Yan X, Liu J, Wu H, Liu Y, Zheng S, Zhang C, Yang C (2016) Impact of miR-208 and its target gene nemo-like kinase on the protective effect of Ginsenoside Rb1 in hypoxia/ischemia Injuried cardiomyocytes. Cell Physiol Biochem 39:1187–1195CrossRefGoogle Scholar
  24. Yuan Y, Du W, Wang Y et al (2015) Suppression of AKT expression by miR-153 produced anti-tumor activity in lung cancer. Int J Cancer 136:1333–1340CrossRefGoogle Scholar
  25. Zhang Y, Kong WN, Chai XQ (2018) Compound of icariin, astragalus, and puerarin mitigates iron overload in the cerebral cortex of Alzheimer's disease mice. Neural Regen Res 13:731–736CrossRefGoogle Scholar
  26. Zhou J, Xie M, Shi Y et al (2015) MicroRNA-153 functions as a tumor suppressor by targeting SET7 and ZEB2 in ovarian cancer cells. Oncol Rep 34:111–120CrossRefGoogle Scholar
  27. Zou Y, Liu W, Zhang J, Xiang D (2016) miR-153 regulates apoptosis and autophagy of cardiomyocytes by targeting Mcl-1. Mol Med Rep 14:1033–1039CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of NursingYidu Central Hospital of Wei FangWeifangChina
  2. 2.Department of EmergencyYidu Central Hospital of Wei FangWeifangChina

Personalised recommendations