Advertisement

Chromosome Research

, Volume 26, Issue 4, pp 333–343 | Cite as

Distribution of CR1-like transposable element in woodpeckers (Aves Piciformes): Z sex chromosomes can act as a refuge for transposable elements

  • Natasha Avila BertocchiEmail author
  • Thays Duarte de Oliveira
  • Analía del Valle Garnero
  • Rafael Luiz Buogo Coan
  • Ricardo José Gunski
  • Cesar Martins
  • Fabiano Pimentel Torres
Original Article

Abstract

Birds have relatively few repetitive sequences compared to other groups of vertebrates; however, the members of order Piciformes (woodpeckers) have more of these sequences, composed mainly of transposable elements (TE). The TE most often found in birds is a retrotransposon chicken repeat 1 (CR1). Piciformes lineages were subjected to an expansion of the CR1 elements, carrying a larger fraction of transposable elements. This study compared patterns of chromosome distribution among five bird species, through chromosome mapping of the CR1 sequence and reconstructed their phylogenetic tree. We analyzed several members of Piciformes (Colaptes campestris, Colaptes melanochloros, Melanerpes candidus, and Veniliornis spilogaster), as well as Galliformes (Gallus gallus). Gallus gallus is the species with which most genomic and hence cytogenetic studies have been performed. The results showed that CR1 sequences are a monophyletic group and do not depend on their hosts. All species analyzed showed a hybridization signal by fluorescence in situ hybridization (FISH). In all species, the chromosomal distribution of CR1 was not restricted to heterochromatin regions in the macrochromosomes, principally pair 1 and the Z sex chromosome. Accumulation in the Z sex chromosomes can serve as a refuge for transposable elements. These results highlight the importance of transposable elements in host genomes and karyotype evolution.

Keywords

Retrotransposon Birds Genomes Genome organization FISH Sex chromosomes 

Abbreviations

CCA

Colaptes campestris

CME

Colaptes melanochloros

CR1

Chicken repeat 1

FISH

Fluorescent in situ hybridization

GGA

Gallus gallus

LINE

Long interspersed nucleotide elements

MCA

Melanerpes candidus

ORF

Open reading frames

PCR

Polymerase chain reaction

PPU

Picoides pubescens

RT

Reverse transcriptase

TEs

Transposable elements

VSP

Veniliornis spilogaster

Notes

Acknowledgments

The authors are grateful to Dr. Rafael Kretschmer for his inspiring comments on the manuscript and to the anonymous reviewers for their valuable comments to improve the manuscript.

Author’s contribution

NAB and TDO conceived, designed research most of the experiments and contributed to the interpretation of results. NAB and TDO wrote the manuscript. NAB and RLBC did the in silico experiments. AVG and FPT supervised the project. NAB, TDO, RJG, AVG, CM and FPT performed research. NAB and TDO contributed equal. All authors read and approved the manuscript.

Funding information

CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) provided financial support.

Compliance with ethical standards

The experiments followed protocols approved by the Ethics Committee on the Use of Animals (CEUA – Universidade Federal do Pampa, 026/2012).

Supplementary material

10577_2018_9592_MOESM1_ESM.xls (54 kb)
Supplementary Table 1 (XLS 54 kb)

References

  1. Bachtrog D (2005) Sex chromosome evolution : molecular aspects of Y-chromosome degeneration in Drosophila. Genome Res 15:1393–1401.  https://doi.org/10.1101/gr.3543605 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bailly-Bechet M, Haudry A, Lerat E (2014) “One code to find them all”: a perl tool to conveniently parse RepeatMasker output files. Mob DNA 5:13.  https://doi.org/10.1186/1759-8753-5-13 CrossRefPubMedCentralGoogle Scholar
  3. Burch JB, Davis DL, Haas NB (1993) Chicken repeat 1 elements contain a pol-like open reading frame and belong to the non-long terminal repeat class of retrotransposons. Proc Natl Acad Sci 90(17):8199–8203CrossRefGoogle Scholar
  4. Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220CrossRefGoogle Scholar
  5. Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity (Edinb) 95:118–128.  https://doi.org/10.1038/sj.hdy.6800697 CrossRefGoogle Scholar
  6. Coullin P, Bed’Hom B, Candelier JJ, Vettese D, Maucolin S, Moulin S, Galkina SA, Bernheim A, Volobouev V (2005) Cytogenetic repartition of chicken CR1 sequences evidenced by PRINS in Galliformes and some other birds. Chromosom Res 13(7):665–673CrossRefGoogle Scholar
  7. de Oliveira TD, Kretschmer R, Bertocchi NA, Degrandi TM, de Oliveira EHC, Cioffi MB, Garnero AV, Gunski RJ (2017) Genomic organization of repetitive DNA in woodpeckers (Aves, Piciformes): implications for karyotype and ZW sex chromosome differentiation. PLoS One 12:e0169987.  https://doi.org/10.1371/journal.pone.0169987 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Garnero ADV, Gunski RJ (2000) Comparative analysis of the karyotypes of Nothura maculosa and Rynchotus rufescens (Aves, Tinamidae). A case of chromosomal polymorphism. Nucl 43:64–70Google Scholar
  9. Gibbs RA, Weinstock GM, Metzker ML et al (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428:493–521.  https://doi.org/10.1038/nature02426 CrossRefPubMedGoogle Scholar
  10. Green RE, Braun EL, Armstrong J, Earl D, Nguyen N, Hickey G, Vandewege MW, St. John JA, Capella-Gutierrez S, Castoe TA, Kern C, Fujita MK, Opazo JC, Jurka J, Kojima KK, Caballero J, Hubley RM, Smit AF, Platt RN, Lavoie CA, Ramakodi MP, Finger JW, Suh A, Isberg SR, Miles L, Chong AY, Jaratlerdsiri W, Gongora J, Moran C, Iriarte A, McCormack J, Burgess SC, Edwards SV, Lyons E, Williams C, Breen M, Howard JT, Gresham CR, Peterson DG, Schmitz J, Pollock DD, Haussler D, Triplett EW, Zhang G, Irie N, Jarvis ED, Brochu CA, Schmidt CJ, McCarthy FM, Faircloth BC, Hoffmann FG, Glenn TC, Gabaldon T, Paten B, Ray DA (2014) Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 346(80):1254449.  https://doi.org/10.1126/science.1254449 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Haas NB, Grabowski JM, Sivitz AB, Burch JBE (1997) Chicken repeat 1 (CR1) elements, which define an ancient family of vertebrate non-LTR retrotransposons, contain two closely spaced open reading frames. Gene 197(1-2):305–309CrossRefGoogle Scholar
  12. Haas NB, Grabowski JM, North J, Moran JV, Kazazian H, Burch JBE (2001) Subfamilies of CR1 non-LTR retrotransposons have different 5′UTR sequences but are otherwise conserved. Gene 265(1-2):175–183.  https://doi.org/10.1016/S0378-1119(01)00344-4 CrossRefPubMedGoogle Scholar
  13. Hughes AL, Hughes MK (1995) Small genomes for better flyers. Nature 377:391CrossRefGoogle Scholar
  14. Jarvis ED, Mirarab S, Aberer AJ et al (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346(80):1126–1138.  https://doi.org/10.1126/science.1251385 CrossRefGoogle Scholar
  15. Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467.  https://doi.org/10.1159/000084979 CrossRefPubMedGoogle Scholar
  16. Kajikawa M, Ohshima K, Okada N (1997) Determination of the entire sequence of turtle CR1: the first open reading frame of the turtle CR1 element encodes a protein with a novel zinc finger motif. Mol Biol Evol 14(12):1206–1217CrossRefGoogle Scholar
  17. Kapitonov VV, Jurka J (2003) The esterase and PHD domains in CR1-like non-LTR retrotransposons. Mol Biol Evol 20(1):38–46CrossRefGoogle Scholar
  18. Kapusta A, Suh A (2017) Evolution of bird genomes-a transposon’s-eye view. Ann N Y Acad Sci 1389:164–185.  https://doi.org/10.1111/nyas.13295 CrossRefPubMedGoogle Scholar
  19. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780.  https://doi.org/10.1093/molbev/mst010 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Klein SJ, O’Neill RJ (2018) Transposable elements: genome innovation, chromosome diversity, and centromere conflict. Chromosom Res 26:5–23.  https://doi.org/10.1007/s10577-017-9569-5 CrossRefGoogle Scholar
  21. Kordiš D, Lovšin N, Gubenšek F, Shedlock A (2006) Phylogenomic analysis of the L1 retrotransposons in deuterostomia. Syst Biol 55(6):886–901CrossRefGoogle Scholar
  22. Kretschmer R, Ferguson-Smith M, de Oliveira E (2018) Karyotype evolution in birds: from conventional staining to chromosome painting. Genes (Basel) 9:181.  https://doi.org/10.3390/genes9040181 CrossRefGoogle Scholar
  23. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefPubMedGoogle Scholar
  24. Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754–1760.  https://doi.org/10.1093/bioinformatics/btp324 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Manthey JD, Moyle RG, Boissinot S (2018) Multiple and independent phases of transposable element amplification in the genomes of Piciformes (woodpeckers and allies). Genome Biol Evol 10:1445–1456.  https://doi.org/10.1093/gbe/evy105 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Matsubara K, Meally DO, Azad B, et al (2016) Amplification of microsatellite repeat motifs is associated with the evolutionary differentiation and heterochromatinization of sex chromosomes in Sauropsida. 111–123.  https://doi.org/10.1007/s00412-015-0531-z
  27. Okonechnikov K, Golosova O, Fursov M et al (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28:1166–1167.  https://doi.org/10.1093/bioinformatics/bts091 CrossRefPubMedGoogle Scholar
  28. Sasaki M, Ikeuchi T, Makino S (1968) A feather pulp culture technique for avian chromosomes, with notes on the chromosomes of the peafowl and the ostrich. Experientia 24:1292–1293.  https://doi.org/10.1007/BF02146680 CrossRefGoogle Scholar
  29. Shibusawa M, Nishibori M, Nishida-Umehara C, Tsudzuki M, Masabanda J, Griffin DK, Matsuda Y (2004) Karyotypic evolution in the Galliformes: an examination of the process of karyotypic evolution by comparison of the molecular cytogenetic findings with the molecular phylogeny. Cytogenet Genome Res 106:111–119.  https://doi.org/10.1159/000078570 CrossRefPubMedGoogle Scholar
  30. Steinemann M, Steinemann S (1992) Degenerating Y chromosome of Drosophila miranda: a trap for retrotransposons. Proc Natl Acad Sci U S A 89:7591–7595CrossRefGoogle Scholar
  31. Stock AD, Arrighi FE, Stefos K (1974) Chromosome homology in birds: banding patterns of the chromosomes of the domestic chicken. Ring-necked dove, and domestic pigeon. Cytogenet Cell Genet 13:410–418CrossRefGoogle Scholar
  32. Stumph WE, Kristo P, Tsai M-J, O’Malley BW (1981) A chicken middle-repetitive DNA sequence which shares homology with mammalian ubiquitous repeats. Nucleic Acids Res 9(20):5383–5398CrossRefGoogle Scholar
  33. Suh A (2015) The specific requirements for CR1 retrotransposition explain the scarcity of retrogenes in birds. J Mol Evol 81(1-2):18–20CrossRefGoogle Scholar
  34. Suh A, Paus M, Kiefmann M, Churakov G, Franke FA, Brosius J, Kriegs JO, Schmitz J (2011) Mesozoic retroposons reveal parrots as the closest living relatives of passerine birds. Nat Commun 2:443.  https://doi.org/10.1038/ncomms1448 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Suh A, Churakov G, Ramakodi MP, Platt RN II, Jurka J, Kojima KK, Caballero J, Smit AF, Vliet KA, Hoffmann FG, Brosius J, Green RE, Braun EL, Ray DA, Schmitz J (2014) Multiple lineages of ancient CR1 retroposons shaped the early genome evolution of amniotes. Genome Biol Evol 7:205–217.  https://doi.org/10.1093/gbe/evu256 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306.  https://doi.org/10.1016/0014-4827(72)90558-7 CrossRefPubMedGoogle Scholar
  37. Supiwong W, Liehr T, Cioffi MB, Chaveerach A, Kosyakova N, Pinthong K, Tanee T, Tanomtong A (2013) Karyotype and cytogenetic mapping of 9 classes of repetitive DNAs in the genome of the naked catfish Mystus bocourti (Siluriformes, Bagridae). Mol Cytogenet 6:51.  https://doi.org/10.1186/1755-8166-6-51 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Wicker T, Robertson JS, Schulze SR, et al (2005) The repetitive landscape of the chicken genome. 126–136.  https://doi.org/10.1101/gr.2438005
  39. Wong LH, Choo KHA (2004) Evolutionary dynamics of transposable elements at the centromere. Trends Genet 20:611–616.  https://doi.org/10.1016/j.tig.2004.09.011 CrossRefPubMedGoogle Scholar
  40. Zhang G, Li C, Li Q, Li B, Larkin DM, Lee C, Storz JF, Antunes A, Greenwold MJ, Meredith RW, Odeen A, Cui J, Zhou Q, Xu L, Pan H, Wang Z, Jin L, Zhang P, Hu H, Yang W, Hu J, Xiao J, Yang Z, Liu Y, Xie Q, Yu H, Lian J, Wen P, Zhang F, Li H, Zeng Y, Xiong Z, Liu S, Zhou L, Huang Z, An N, Wang J, Zheng Q, Xiong Y, Wang G, Wang B, Wang J, Fan Y, da Fonseca RR, Alfaro-Nunez A, Schubert M, Orlando L, Mourier T, Howard JT, Ganapathy G, Pfenning A, Whitney O, Rivas MV, Hara E, Smith J, Farre M, Narayan J, Slavov G, Romanov MN, Borges R, Machado JP, Khan I, Springer MS, Gatesy J, Hoffmann FG, Opazo JC, Hastad O, Sawyer RH, Kim H, Kim KW, Kim HJ, Cho S, Li N, Huang Y, Bruford MW, Zhan X, Dixon A, Bertelsen MF, Derryberry E, Warren W, Wilson RK, Li S, Ray DA, Green RE, O'Brien SJ, Griffin D, Johnson WE, Haussler D, Ryder OA, Willerslev E, Graves GR, Alstrom P, Fjeldsa J, Mindell DP, Edwards SV, Braun EL, Rahbek C, Burt DW, Houde P, Zhang Y, Yang H, Wang J, Avian Genome Consortium, Jarvis ED, Gilbert MTP, Wang J, Ye C, Liang S, Yan Z, Zepeda ML, Campos PF, Velazquez AMV, Samaniego JA, Avila-Arcos M, Martin MD, Barnett R, Ribeiro AM, Mello CV, Lovell PV, Almeida D, Maldonado E, Pereira J, Sunagar K, Philip S, Dominguez-Bello MG, Bunce M, Lambert D, Brumfield RT, Sheldon FH, Holmes EC, Gardner PP, Steeves TE, Stadler PF, Burge SW, Lyons E, Smith J, McCarthy F, Pitel F, Rhoads D, Froman DP (2014) Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346(80):1311–1320.  https://doi.org/10.1126/science.1251385 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Natasha Avila Bertocchi
    • 1
    Email author
  • Thays Duarte de Oliveira
    • 2
  • Analía del Valle Garnero
    • 3
    • 4
  • Rafael Luiz Buogo Coan
    • 5
  • Ricardo José Gunski
    • 3
    • 4
  • Cesar Martins
    • 5
  • Fabiano Pimentel Torres
    • 3
    • 4
  1. 1.Programa de Pós-graduação em Genética e Biologia MolecularUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Programa de Pós-graduação em Biologia AnimalUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  3. 3.Programa de Pós-graduação em Ciências BiológicasUniversidade Federal do Pampa (Unipampa)São GabrielBrazil
  4. 4.Laboratório de Diversidade Genética AnimalUniversidade Federal do Pampa (Unipampa)São GabrielBrazil
  5. 5.Departamento de Morfologia, Laboratório Genômica IntegrativaUniversidade Estadual Paulista (UNESP)BotucatuBrazil

Personalised recommendations