Skip to main content
Log in

Complex cytogenetic analysis of early lethality mouse embryos

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

An increasing interest in the molecular mechanisms governing cell division has resulted in the discovery of several groups of genes that participate in the regulation of mitosis and meiosis in eukaryotes. Inactivation of these genes in mice often leads to early embryonic lethality. To show direct causality between mutations of these genes, chromosomal instability and embryonic death, a technique enabling detailed cytogenetic analysis of embryonic cells is required. Here, we develop and test a comprehensive approach that allows complex analysis of individual early postimplantation embryos and combines polymerase chain reaction genotyping with the preparation and detailed karyotypic inspection of cells at the metaphase and anaphase stages. The method enables good chromosomal spreading and scattering of nuclei to perform routine cytogenetics (i.e., standard stain and G-banding). It also permits the application of specialized techniques such as fluorescence in situ hybridization to detect particular chromosomes and to verify the integrity of individual chromosomes. Utility of the new method is demonstrated by an analysis of embryonic day E7.5–E9.5 tissue from mice deficient in the spindle checkpoint gene Bub1b.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DAPI:

Diamidophenylindole

DMEM:

Dulbecco’s modified eagle’s medium

FISH:

Fluorescence in situ hybridization

MEFs:

Mouse embryonic fibroblasts

MSC:

Mitotic spindle checkpoint

PCR:

Polymerase chain reaction

References

  • Babu JR, Jeganathan KB, Baker DJ et al (2003) Rae1 is an essential mitotic checkpoint regulator that cooperates with Bub3 to prevent chromosome missegregation. J Cell Biol 160:341–353

    Article  PubMed  CAS  Google Scholar 

  • Baker DJ, Jeganathan KB, Cameron JD et al (2004) BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat Genet 36:744–749

    Article  PubMed  CAS  Google Scholar 

  • Bishop CE, Boursot P, Baron B (1985) Most classical Mus musculus domesticus laboratory mouse strains carry a Mus musculus musculus Y chromosome. Nature 315:70–72

    Article  PubMed  CAS  Google Scholar 

  • Bolzer A, Craig JM, Cremer T, Speicher MR (1999) A complete set of repeat-depleted, PCR-amplifiable, human chromosome-specific painting probes. Cytogenet Cell Genet 84:233–240

    Article  PubMed  CAS  Google Scholar 

  • Chatzimeletiou K, Morrison EE, Prapas N et al (2005) Spindle abnormalities in normally developing and arrested human preimplantation embryos in vitro identified by confocal laser scanning microscopy. Hum Reprod 20:672–682

    Article  PubMed  Google Scholar 

  • Chin CF, Yeong FM (2010) Safeguarding entry into mitosis: the antephase checkpoint. Mol Cell Biol 30:22–32

    Article  PubMed  CAS  Google Scholar 

  • De Bruin RA, Wittenberg C (2009) All eukaryotes: before turning off G1-S transcription, please check your DNA. Cell Cycle 8:214–217

    Article  PubMed  Google Scholar 

  • Dobles M, Liberal V, Scott ML et al (2000) Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell 101:635–645

    Article  PubMed  CAS  Google Scholar 

  • Dyban AP (1983) An improved method for chromosome preparations from preimplantation mammalian embryos, oocytes or isolated blastomeres. Stain Technol 58:69–72

    PubMed  CAS  Google Scholar 

  • Dyban AP, Baranov VS (1978) Cytogenetics of mammalian development (in Russian), in Problemi Biologgii razvitija, Izdatelstwo Nauka, Moskwa, p 216

  • Dyban AP, Wroblewska J (1969) Chromosome preparations from mouse embryos during early organogenesis: dissociation after fixation, followed by air drying. Stain Technol 44:147–150

    PubMed  CAS  Google Scholar 

  • Eiben B, Bartels I, Bahr-Porsch S et al (1990) Cytogenetic analysis of 750 spontaneous abortions with the direct-preparation method of chorionic villi and its implications for studying genetic causes of pregnancy wastage. Am J Hum Genet 47:656–663

    PubMed  CAS  Google Scholar 

  • Epstein CJ, Travis B (1979) Preimplantation lethality of monosomy for mouse chromosome 19. Nature 280:144–145

    Article  PubMed  CAS  Google Scholar 

  • Evans EP, Burtenshaw MD, Ford CE (1972) Chromosomes of mouse embryos and newborn young: preparations from membranes and tail tips. Stain Technol 47:229–234

    PubMed  CAS  Google Scholar 

  • Fragouli E, Wells D, Whalley KM et al (2006) Increased susceptibility to maternal aneuploidy demonstrated by comparative genomic hybridization analysis of human MII oocytes and first polar bodies. Cytogenet Genome Res 114:30–38

    Article  PubMed  CAS  Google Scholar 

  • Fuller BG, Stukenberg PT (2009) Cell division: righting the check. Curr Biol 19:R550–R553

    Article  PubMed  CAS  Google Scholar 

  • Gregson NM, Seabright M, Ford JH, Jahnke AB (1983) Handling chorionic villi for direct chromosome studies. Lancet 322:1491–1492

    Article  Google Scholar 

  • Gropp A (1982) Value of an animal model for trisomy. Virchows Arch 395:117–131

    CAS  Google Scholar 

  • Gropp A, Kolbus U, Giers D (1975) Systematic approach to the study of trisomy in the mouse. II. Cytogenet Cell Genet 14:42–62

    Article  PubMed  CAS  Google Scholar 

  • Guttenbach M, Steinlein C, Engel W et al (2001) Cytogenetic characterization of the TM4 mouse Sertoli cell line. I. Conventional banding techniques, FISH and SKY. Cytogenet Cell Genet 94:71–78

    Article  PubMed  CAS  Google Scholar 

  • Ioffe E, Liu Y, Bhaumik M et al (1995) WW6: an embryonic stem cell line with an inert genetic marker that can be traced in chimeras. Proc Natl Acad Sci USA 92:7357–7361

    Article  PubMed  CAS  Google Scholar 

  • Jeganathan K, Malureanu L, Baker DJ et al (2007) Bub1 mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. J Cell Biol 179:255–267

    Article  PubMed  CAS  Google Scholar 

  • Kalitsis P, Earle E, Fowler KJ et al (2000) Bub3 gene disruption in mice reveals essential mitotic spindle checkpoint function during early embryogenesis. Genes Dev 14:2277–2282

    Article  PubMed  CAS  Google Scholar 

  • Lim DS, Hasty P (1996) A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol Cell Biol 16:7133–7143

    PubMed  CAS  Google Scholar 

  • Lobrich M, Jeggo PA (2007) The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nat Rev Cancer 7:861–869

    Article  PubMed  Google Scholar 

  • Macklon NS, Geraedts JP, Fauser BC (2002) Conception to ongoing pregnancy: the ‘black box’ of early pregnancy loss. Hum Reprod Update 8:333–343

    Article  PubMed  CAS  Google Scholar 

  • Michel LS, Liberal V, Chatterjee A et al (2001) MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409:355–359

    Article  PubMed  CAS  Google Scholar 

  • Santos MA, Kuijk EW, Macklon NS (2010) The impact of ovarian stimulation for IVF on the developing embryo. Reproduction 139:23–34

    Article  PubMed  CAS  Google Scholar 

  • Slavin TP, Kousseff BG (2005) Triploidy and trisomies in the offspring of a mother with a balanced translocation. Prenat Diagn 25:623–624

    Article  PubMed  Google Scholar 

  • Tarkowski AK (1966) An air drying method for chromosome preparations from mouse eggs. Cytogenetics 5:394–400

    Article  Google Scholar 

  • Thompson SL, Bakhoum SF, Compton DA (2010) Mechanisms of chromosomal instability. Curr Biol 20:R285–R295

    Article  PubMed  CAS  Google Scholar 

  • Vanneste E, Voet T, Le CC et al (2009) Chromosome instability is common in human cleavage-stage embryos. Nat Med 15:577–583

    Article  PubMed  CAS  Google Scholar 

  • Weiss RS, Enoch T, Leder P (2000) Inactivation of mouse Hus1 results in genomic instability and impaired responses to genotoxic stress. Genes Dev 14:1886–1898

    PubMed  CAS  Google Scholar 

  • White BJ, Tjio JH, Van de Water LC et al (1974) Trisomy 19 in the laboratory mouse. I. Frequency in different crosses at specific developmental stages and relationship of trisomy to cleft palate. Cytogenet Cell Genet 13:217–231

    Article  PubMed  CAS  Google Scholar 

  • Wroblewska J, Dyban AP (1969) Chromosome preparations from mouse embryos during early organogenesis: dissociation after fixation followed by air drying. Stain Technol 44:147–150

    PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Michael Schmid for providing lab space, reagents, Y chromosome specific probe and advice. We are grateful to Claus Steinlein and Galina Fedorova for expert technical assistance. We thank Burkhard Kneitz for the gift of Bub1b knockout mice and stimulation of helpful discussion, Pamela Stanley for WW-6 ES cells, Elaine Huang for critical reading of this manuscript, and Malcolm Low for discussions and editing of the final text. This work was partly supported by the IZKF of the University of Wuerzburg, Germany and by Medical Research Foundation of Oregon, USA (grant GRESE0010A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev M. Fedorov.

Additional information

Responsible Editor: Beth A. Sullivan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, Q., Hanlon Newell, A.E., Wang, Y. et al. Complex cytogenetic analysis of early lethality mouse embryos. Chromosome Res 19, 567–574 (2011). https://doi.org/10.1007/s10577-011-9209-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-011-9209-4

Keywords

Navigation