Chromosome Research

, Volume 14, Issue 1, pp 117–126 | Cite as

Gene regulation and large-scale chromatin organization in the nucleus

Article

Abstract

Regulation of gene expression involves a number of different levels of organization in the cell nucleus. The main agents of transcriptional control are the cis-acting sequences in the immediate vicinity of a gene, which combine to form the functional unit or domain. Contacts between these sequences through the formation of chromatin loops forms the most basic level of organization. The activity of functional domains is also influenced by higher order chromatin structures that impede or permit access of factors to the genes. Epigenetic modifications can maintain and propagate these active or repressive chromatin structures across large genomic regions or even entire chromosomes. There is also evidence that transcription is organized into structures called ‘factories’ and that this can lead to inter-chromosomal contacts between genes that have the potential to influence their regulation.

Key words

chromatin chromosome functional domain gene regulation transcription 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrulis E, Neiman A, Zappulla D, Sternglatz R (1998) Perinuclear localisation of chromatin facilitates transcriptional silencing. Nature 394: 592–595.PubMedGoogle Scholar
  2. Anguita E, Johnson CA, Wood WG, Turner BM, Higgs DR (2001) Identification of a conserved erythroid specific domain of histone acetylation across the alpha-globin gene cluster. Proc Natl Acad Sci USA 98: 12114–12119.CrossRefPubMedGoogle Scholar
  3. Belmont A, Dietzel S, Nye A, Strukov Y, Tumbar T (1999) Large scale chromatin structure and function. Curr Opin Cell Biol 11: 307–311.CrossRefPubMedGoogle Scholar
  4. Boyes J, Felsenfeld G (1996) Tissue-specific factors additively increase the probability of the all-or-none formation of a hypersensitive site. EMBO J 15: 2496–2507.PubMedGoogle Scholar
  5. Bulger M, van Doorninck JH, Saitoh N et al. (1999) Conservation of sequence and structure flanking the mouse and human beta-globin loci: the beta-globin genes are embedded within an array of odorant receptor genes. Proc Natl Acad Sci USA 96: 5129–5134.CrossRefPubMedGoogle Scholar
  6. Burgess-Beusse B, Farrell C, Gaszner M et al. (2002) The insulation of genes from external enhancers and silencing chromatin. Proc Natl Acad Sci USA 99: 16433–16437.Google Scholar
  7. Bystricky K, Heun P, Gehlen L, Langowski J, Gasser SM (2004) Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques. Proc Natl Acad Sci USA 101: 16495–16500.CrossRefPubMedGoogle Scholar
  8. Cajiao I, Zhang A, Yoo EJ, Cooke NE, Liebhaber SA (2004) Bystander gene activation by a locus control region. EMBO J 23: 3854–3863.CrossRefPubMedGoogle Scholar
  9. Caron H, van Schaik B, van der Mee M et al. (2001) The human transcriptome map: clustering of highly expressed genes in chromosomal domains. Science 291: 1289–1292.CrossRefPubMedGoogle Scholar
  10. Carpenter A, Memedula S, Plutz M, Belmont A (2004) Common effects of acidic activators on large-scale chromatin structure and transcription. Mol Cell Biol 25: 958–968.Google Scholar
  11. Carter D, Chakalova L, Osborne CS, Dai YF, Fraser P (2002) Long-range chromatin regulatory interactions in vivo. Nat Genet 32: 623–626.CrossRefPubMedGoogle Scholar
  12. Casolari JM, Brown CR, Komili S, West J, Hieronymus H, Silver PA (2004) Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117: 427–439.CrossRefPubMedGoogle Scholar
  13. Chambeyron S, Bickmore W (2004) Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 18: 1119–1130.CrossRefPubMedGoogle Scholar
  14. Cheutin T, McNairn A, Jenuwein T, Gilbert D, Singh P, Misteli T (2003) Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science 299: 721–725.CrossRefPubMedGoogle Scholar
  15. Chong S, Riggs AD, Bonifer C (2002) The chicken lysozyme chromatin domain contains a second, widely expressed gene. Nucleic Acids Res 30(2): 463–467.CrossRefPubMedGoogle Scholar
  16. Dillon N (2003) Gene autonomy: position effects continue to raise questions about the physical structure of the particulate Mendelian gene. Nature 425: 457.CrossRefPubMedGoogle Scholar
  17. Dillon N, Sabbattini P (2000) Functional gene expression domains: defining the functional unit of gene regulation. BioEssays 22: 657–665.CrossRefPubMedGoogle Scholar
  18. Dillon N, Trimborn T, Strouboulis J, Fraser P, Grosveld F (1997) The effect of distance on long-range chromatin interactions. Mol Cell 1: 131–139.CrossRefPubMedGoogle Scholar
  19. Dorigo B, Schalch T, Kulangara A, Duda S, Schroeder RR, Richmond TJ (2004) Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science 306: 1571–1573.CrossRefPubMedGoogle Scholar
  20. Elgin SC (1996) Heterochromatin and gene regulation in Drosophila. Curr Opin Genet Dev 6: 193–202.CrossRefPubMedGoogle Scholar
  21. Epner E, Reik A, Cimbora D et al. (1998) The β-globin LCR is not necessary for an open chromatin structure or developmentally regulated transcription of the mouse β-globin locus. Mol Cell 2: 447–455.CrossRefPubMedGoogle Scholar
  22. Festenstein R, Tolaini M, Corbella P et al. (1996) Locus control region function and heterochromatin-induced position effect variegation. Science 271: 1123–1125.PubMedGoogle Scholar
  23. Festenstein R, Pagakis S, Hiragami K et al. (2003) Modulation of heterochromatin protein 1 dynamics in primary mammalian cells. Science 299: 719–721.CrossRefPubMedGoogle Scholar
  24. Fourel G, Magdinier F, Gilson E (2004) Insulator dynamics and the setting of chromatin domains. Bioessays 26: 523–532.CrossRefPubMedGoogle Scholar
  25. Gottschling D, Aparicio O, Billington B, Zakian V (1990) Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63: 751–762.CrossRefPubMedGoogle Scholar
  26. Greaves DR, Wilson FD, Lang G, Kioussis D (1989) Human CD2 3′-flanking sequences confer high-level, T cell-specific, position-independent gene expression in transgenic mice. Cell 56: 979–986.CrossRefPubMedGoogle Scholar
  27. Grewal SI, Rice JC (2004) Regulation of heterochromatin by histone methylation and small RNAs. Curr Opin Cell Biol 16: 230–238.CrossRefPubMedGoogle Scholar
  28. Grosveld F, van Assendelft GB, Greaves DR, Kollias G (1987) Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell 51: 975–985.CrossRefPubMedGoogle Scholar
  29. Grummt I (2003) Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus. Genes Dev 17: 1691–1702.CrossRefPubMedGoogle Scholar
  30. Haynes KA, Leibovitch BA, Rangwala SH, Craig C, Elgin SC (2004) Analyzing heterochromatin formation using chromosome 4 of Drosophila melanogaster. Cold Spring Harbor Symp Quant Biol 69: 267–272.PubMedGoogle Scholar
  31. Heard E (2004) Recent advances in X-chromosome inactivation. Curr Opin Cell Biol 16: 247–255.CrossRefPubMedGoogle Scholar
  32. Hetzer M, Walther, TC, Mattaj IW (2005) Pushing the envelope: structure, function, and dynamics of the nuclear periphery. Annu Rev Cell Dev Biol 21: 347–380.CrossRefPubMedGoogle Scholar
  33. Heun P, Taddei A, Gasser SM (2001) From snapshots to moving pictures: new perspectives on nuclear organization. Trends Cell Biol 11: 519–525.CrossRefPubMedGoogle Scholar
  34. Kelley RL (2004) Path to equality strewn with roX. Dev Biol 269: 18–25.CrossRefPubMedGoogle Scholar
  35. Kimura H, Sugaya K, Cook PR (2002) The transcription cycle of RNA polymerase II in living cells. J Cell Biol 159: 777–782.CrossRefPubMedGoogle Scholar
  36. Krajewski W, Becker PB (1998) Reconstitution of hyperacetylated, DNase I-sensitive chromatin characterized by high conformational flexibility of nucleosomal DNA. EMBO Rep 95: 1540–1545.Google Scholar
  37. Labrador M, Corces VG (2002) Setting the boundaries of chromatin domains and nuclear organization. Cell 111: 151–154.CrossRefPubMedGoogle Scholar
  38. Litt MD, Simpson M, Recillas-Targa F, Prioleau MN, Felsenfeld G (2001) Transitions in histone acetylation reveal boundaries of three separately regulated neighboring loci. EMBO J 20: 2224–2235.CrossRefPubMedGoogle Scholar
  39. Lundgren M, Chow C, Sabbattini P, Georgiou A, Minaee S, Dillon N (2000) Transcription factor dosage affects changes in higher order chromatin structure associated with activation of a heterochromatic gene. Cell 103: 733–743.CrossRefPubMedGoogle Scholar
  40. Mahy NL, Perry PE, Gilchrist S, Baldock RA, Bickmore WA (2002) Spatial organization of active and inactive genes and noncoding DNA within chromosome territories. J Cell Biol 157: 579–589.CrossRefPubMedGoogle Scholar
  41. Marshall WF, Straight A, Marko JF et al. (1997) Interphase chromosomes undergo constrained diffusional motion in living cells. Curr Biol 7: 930–939.CrossRefPubMedGoogle Scholar
  42. Martin S, Pombo A (2003) Transcription factories: quantitative studies of nanostructures in the mammalian nucleus. Chromosome Res 11: 461–470.CrossRefPubMedGoogle Scholar
  43. Mayer C, Grummt I (2005) Cellular stress and nucleolar function. Cell Cycle 4: 1036–1038.PubMedGoogle Scholar
  44. McNally J, Muller W, Walker D, Wolford R, Hager G (2000) The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287: 1262–1265.CrossRefPubMedGoogle Scholar
  45. Milot E, Strouboulis J, Trimborn T et al. (1996) Heterochromatin effects on the frequency and duration of LCR-mediated gene transcription. Cell 87: 105–114.CrossRefPubMedGoogle Scholar
  46. Minaee S, Farmer D, Georgiou A et al. (2005) Mapping and functional analysis of regulatory sequences in the mouse lambda5-VpreB1 domain. Mol Immunol 42: 1283–1292.CrossRefPubMedGoogle Scholar
  47. Osborne C, Chakalova L, Brown K et al. (2004) Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet 36: 1065–1071.CrossRefPubMedGoogle Scholar
  48. Ovcharenko I, Loots GG, Nobrega MA, Hardison RC, Miller W, Stubbs L (2005) Evolution and functional classification of vertebrate gene deserts. Genome Res 15: 137–145.PubMedGoogle Scholar
  49. Peters AH, Schubeler D (2005) Methylation of histones: playing memory with DNA. Curr Opin Cell Biol 17: 230–238.PubMedGoogle Scholar
  50. Peters A, Kubicek S, Mechtler K et al. (2003) Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 12: 1577–1589.CrossRefPubMedGoogle Scholar
  51. Philipsen S, Pruzina S, Grosveld F (1993) The minimal requirements for activity in transgenic mice of hypersensitive site 3 of the beta globin locus control region. EMBO J 12: 1077–1085.PubMedGoogle Scholar
  52. Raska I, Koberna K, Malinsky J, Fidlerova H, and Masata M (2004) The nucleolus and transcription of ribosomal genes. Biol Cell 96: 579–594.CrossRefPubMedGoogle Scholar
  53. Sabbattini P, Georgiou A, Sinclair C, Dillon N (1999) Analysis of mice with single copies and multiple copies of transgenes reveals a novel arrangement for the λ5-VpreB1 locus control region. Mol Cell Biol 19: 671–679.PubMedGoogle Scholar
  54. Schalch T, Duda S, Sargent DF, Richmond TJ (2005) X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436: 138–141.CrossRefPubMedGoogle Scholar
  55. Silva J, Mak W, Zvetkova I et al. (2003) Establishment of histone H3 methylation on the inactive X chromosome requires transient recruitment of Eed–Enx1 polycomb group complexes. Dev Cell 4: 481–495.CrossRefPubMedGoogle Scholar
  56. Singer G, Lloyd A, Huminiecki L, Wolfe K (2005) Clusters of co-expressed genes in mammalian genomes are conserved by natural selection. Mol Biol Evol 22: 767–775.PubMedGoogle Scholar
  57. Spellman PT, Rubin GM (2002) Evidence for large domains of similarly expressed genes in the Drosophila genome. J Biol 1: 5.CrossRefPubMedGoogle Scholar
  58. Spilianakis C, Lalioti M, Town T, Lee G, Flavell R (2005) Interchromosomal associations between alternatively expressed loci. Nature 435: 637–645.CrossRefPubMedGoogle Scholar
  59. Spradling AC (1994) Transposable elements and the evolution of heterochromatin. Soc Gen Physiol Ser 49: 69–83.PubMedGoogle Scholar
  60. Szutorisz H, Canzonetta C, Georgiou A, Chow, C-M, Tora L, Dillon N (2005a). Formation of an active tissue-specific chromatin domain initiated by epigenetic marking at the embryonic stem cell stage. Mol Cell Biol 25: 1804–1820.CrossRefPubMedGoogle Scholar
  61. Szutorisz H, Dillon N, Tora L (2005b) The role of enhancers as centres for general transcription factor recruitment. Trends Biochem Sci 30: 593–599.CrossRefPubMedGoogle Scholar
  62. Tolhuis B, Palstra RJ, Splinter E, Grosveld F, de Laat W (2002) Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell 10: 1453–1465.CrossRefPubMedGoogle Scholar
  63. Verschure PJ, van Der Kraan I, Manders EM, van Driel R (1999) Spatial relationship between transcription sites and chromosome territories. J Cell Biol 147: 13–24.CrossRefPubMedGoogle Scholar
  64. Vogel J, von Heydebreck A, Purmann A, Sperling S (2005) Chromosomal clustering of a human transcriptome reveals regulatory background. BMC Bioinformatics 19: 6:230.Google Scholar
  65. Wallrath L, Elgin S (1995) Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev 9: 1263–1267.PubMedGoogle Scholar
  66. Weiler K, Wakimoto B (1995) Heterochromatin and gene expression in Drosophila. Annu Rev Genet 29: 577–605.CrossRefPubMedGoogle Scholar
  67. Williams RR (2003) Transcription and the territory: the ins and outs of gene positioning. Trends Genet 19: 298–302.CrossRefPubMedGoogle Scholar
  68. Woodcock CL, Dimitrov S (2001) Higher-order structure of chromatin and chromosomes. Curr Opin Genet Dev 11: 130–135.CrossRefPubMedGoogle Scholar
  69. Woodcock CL, Frado LL, Rattner JB (1984) The higher-order structure of chromatin: evidence for a helical ribbon arrangement. J Cell Biol 99: 42–52.CrossRefPubMedGoogle Scholar
  70. Yang XJ (2004) Lysine acetylation and the bromodomain: a new partnership for signaling. BioEssays 26: 1076–1087.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Gene Regulation and Chromatin Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial CollegeHammersmith CampusLondonUK

Personalised recommendations