Advertisement

Genetic and Molecular Biology of Multiple Sclerosis Among Iranian Patients: An Overview

  • Meysam MoghbeliEmail author
Review Paper
  • 80 Downloads

Abstract

Multiple sclerosis (MS) is one if the common types of autoimmune disorders in developed countries. Various environmental and genetic factors are associated with initiation and progression of MS. It is believed that the life style changes can be one of the main environmental risk factors. The environmental factors are widely studied and reported, whereas minority of reports have considered the role of genetic factors in biology of MS. Although Iran is a low-risk country in the case of MS prevalence, it has been shown that there was a dramatically rising trend of MS prevalence among Iranian population during recent decades. Therefore, it is required to assess the probable MS risk factors in Iran. In the present study, we summarized all of the reported genes until now which have been associated with MS susceptibility among Iranian patients. To clarify the probable molecular biology of MS progression, we categorized these reported genes based on their cellular functions. This review paves the way of introducing a specific population-based diagnostic panel of genetic markers among the Iranian population for the first time in the world.

Keywords

Multiple sclerosis Genetic Risk factor Iran 

Notes

Author Contributions

MM prepared and edited the draft.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Abdollah Zadeh R, Jalilian N, Sahraian MA, Kasraian Z, Noori-Daloii MR (2017) Polymorphisms of RPS6KB1 and CD86 associates with susceptibility to multiple sclerosis in Iranian population. Neurol Res 39:217–222.  https://doi.org/10.1080/01616412.2016.1278108 CrossRefPubMedGoogle Scholar
  2. Abdollahzadeh R, Fard MS, Rahmani F, Moloudi K, Kalani BS, Azarnezhad A (2016) Predisposing role of vitamin D receptor (VDR) polymorphisms in the development of multiple sclerosis: A case-control study. J Neurol Sci 367:148–151.  https://doi.org/10.1016/j.jns.2016.05.053 CrossRefPubMedGoogle Scholar
  3. Abediankenari S et al (2011) MICB gene expression on peripheral blood mononuclear cells and susceptibility to multiple sclerosis in north of Iran. Iran J Allergy Asthma Immunol 10:261–265.PubMedGoogle Scholar
  4. Abolfazli R et al (2014) Relationship between HLA-DRB1* 11/15 genotype and susceptibility to multiple sclerosis in Iran. J Neurol Sci 345:92–96.  https://doi.org/10.1016/j.jns.2014.07.013 CrossRefPubMedGoogle Scholar
  5. Adorini L, Penna G (2008) Control of autoimmune diseases by the vitamin D endocrine system Nature clinical practice. Rheumatology 4:404–412.  https://doi.org/10.1038/ncprheum0855 CrossRefPubMedGoogle Scholar
  6. Ahn M, Min DS, Kang J, Jung K, Shin T (2001) Increased expression of phospholipase D1 in the spinal cords of rats with experimental autoimmune encephalomyelitis. Neurosci Lett 316:95–98CrossRefPubMedGoogle Scholar
  7. Akcali A, Pehlivan S, Pehlivan M, Sever T, Akgul P, Neyal M (2010) TNF-alpha promoter polymorphisms in multiple sclerosis: no association with -308 and -238 alleles, but the -857 alleles in associated with the disease in Turkish patients. Int J immunogenet 37:91–95.  https://doi.org/10.1111/j.1744-313x.2009.00895.x CrossRefPubMedGoogle Scholar
  8. Aksoy D, Ates O, Kurt S, Cevik B, Sumbul O (2016) Analysis of MMP2-1306C/T and TIMP2G-418C polymorphisms with relapsing remitting multiple sclerosis. J Investig Med 64:1143–1147.  https://doi.org/10.1136/jim-2016-000111 CrossRefPubMedGoogle Scholar
  9. Al Jumah M et al (2018) HLA class II polymorphism in Saudi patients with multiple sclerosis. Hla 91:17–22.  https://doi.org/10.1111/tan.13173 CrossRefPubMedGoogle Scholar
  10. Alatab S, Hossein-nezhad A, Mirzaei K, Mokhtari F, Shariati G, Najmafshar A (2011a) Inflammatory profile, age of onset, and the MTHFR polymorphism in patients with multiple sclerosis. J Mol Neurosci 44:6–11.  https://doi.org/10.1007/s12031-010-9486-y CrossRefPubMedGoogle Scholar
  11. Alatab S, Maghbooli Z, Hossein-Nezhad A, Khosrofar M, Mokhtari F (2011b) Cytokine profile, Foxp3 and nuclear factor-kB ligand levels in multiple sclerosis subtypes. Minerva medica 102:461–468PubMedGoogle Scholar
  12. Ali WH et al (2013) Deficiencies of the lipid-signaling enzymes phospholipase D1 and D2 alter cytoskeletal organization, macrophage phagocytosis, and cytokine-stimulated neutrophil recruitment. PloS ONE 8:e55325.  https://doi.org/10.1371/journal.pone.0055325 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Aliomrani M, Sahraian MA, Shirkhanloo H, Sharifzadeh M, Khoshayand MR, Ghahremani MH (2017) Correlation between heavy metal exposure and GSTM1 polymorphism in Iranian multiple sclerosis patients. Neurol Sci 38:1271–1278.  https://doi.org/10.1007/s10072-017-2934-5 CrossRefPubMedGoogle Scholar
  14. Almasi S et al (2013) Quantitative evaluation of CXCL8 and its receptors (CXCR1 and CXCR1) gene expression in Iranian patients with multiple sclerosis. Immunol Investig 42:737–748.  https://doi.org/10.3109/08820139.2013.812652 CrossRefGoogle Scholar
  15. Al-Naseri MA, Salman ED, Ad’hiah AH (2019) Association between interleukin-4 and interleukin-10 single nucleotide polymorphisms and multiple sclerosis among Iraqi patients. Neurol Sci.  https://doi.org/10.1007/s10072-019-04000-4 CrossRefPubMedGoogle Scholar
  16. Alter M, Yamoor M, Harshe M (1974) Multiple sclerosis and nutrition. Arch Neurol 31:267–272CrossRefPubMedGoogle Scholar
  17. Amirzargar A et al (2007) Profile of cytokine gene polymorphisms in Iranian multiple sclerosis patients. Mult Scler 13:253–255.  https://doi.org/10.1177/1352458506070237 CrossRefPubMedGoogle Scholar
  18. Arababadi MK, Mosavi R, Ravari A, Teimori H, Hassanshahi G (2012) Association of interleukin-4 polymorphisms with multiple sclerosis in southeastern Iranian patients. Ann Saudi Med 32:127–130CrossRefPubMedPubMedCentralGoogle Scholar
  19. Asadikaram G et al (2016) Interferon-beta 1a modulates expression of RAGE but not S100A12 and nuclear factor-kappaB in multiple sclerosis patients. Neuroimmunomodulation 23:345–351.  https://doi.org/10.1159/000464136 CrossRefPubMedGoogle Scholar
  20. Ascherio A, Munger KL, Lunemann JD (2012) The initiation and prevention of multiple sclerosis Nature reviews. Neurology 8:602–612.  https://doi.org/10.1038/nrneurol.2012.198 CrossRefPubMedGoogle Scholar
  21. Assadi M et al (2011) Correlation of circulating omentin-1 with bone mineral density in multiple sclerosis: the crosstalk between bone and adipose tissue. PloS ONE 6:e24240.  https://doi.org/10.1371/journal.pone.0024240 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Aune TM, Spurlock CF 3rd (2016) Long non-coding RNAs in innate and adaptive immunity. Virus Res 212:146–160.  https://doi.org/10.1016/j.virusres.2015.07.003 CrossRefPubMedGoogle Scholar
  23. Austin PJ et al (2017) Transcriptional profiling identifies the long noncoding RNA plasmacytoma variant translocation (PVT1) as a novel regulator of the asthmatic phenotype in human airway smooth muscle. J Allergy Clin Immunol 139:780–789.  https://doi.org/10.1016/j.jaci.2016.06.014 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Avolio C et al (2003) Serum MMP-2 and MMP-9 are elevated in different multiple sclerosis subtypes. J Neuroimmunol 136:46–53CrossRefPubMedGoogle Scholar
  25. Azimi T, Ghafouri-Fard S, Davood Omrani M, Mazdeh M, Arsang-Jang S, Sayad A, Taheri M (2018) Vaccinia related kinase 2 (VRK2) expression in neurological disorders: schizophrenia, epilepsy and multiple sclerosis. Mult Scler Relat Disord 19:15–19.  https://doi.org/10.1016/j.msard.2017.10.017 CrossRefPubMedGoogle Scholar
  26. Babaloo Z, Yeganeh RK, Farhoodi M, Baradaran B, Bonyadi M, Aghebati L (2013) Increased IL-17A but decreased IL-27 serum levels in patients with multiple sclerosis. Iran J Immunol 10:47–54PubMedGoogle Scholar
  27. Badihian S, Shaygannejad V, Soleimani P, Mirmosayyeb O, Samee Z, Manouchehri N, Esmaeil N (2018) Decreased serum levels of interleukin-35 among multiple sclerosis patients may be related to disease progression. J Biol Regul Homeost Agents 32:1249–1253PubMedGoogle Scholar
  28. Baghizadeh S, Sahraian MA, Beladimoghadam N (2013) Clinical and demographic factors affecting disease severity in patients with multiple sclerosis. Iran J Neurol 12:1–8PubMedPubMedCentralGoogle Scholar
  29. Bai XF et al (2004) CD24 controls expansion and persistence of autoreactive T cells in the central nervous system during experimental autoimmune encephalomyelitis. J Exp Med 200:447–458.  https://doi.org/10.1084/jem.20040131 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Baranzini SE, Nickles D (2012) Genetics of multiple sclerosis: swimming in an ocean of data. Curr Opin Neurol 25:239–245.  https://doi.org/10.1097/WCO.0b013e3283533a93 CrossRefPubMedGoogle Scholar
  31. Barateiro A, Afonso V, Santos G, Cerqueira JJ, Brites D, van Horssen J, Fernandes A (2016) S100B as a potential biomarker and therapeutic target in multiple sclerosis. Mol Neurobiol 53:3976–3991.  https://doi.org/10.1007/s12035-015-9336-6 CrossRefPubMedGoogle Scholar
  32. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233.  https://doi.org/10.1016/j.cell.2009.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Bartosik-Psujek H, Stelmasiak Z (2005) The levels of chemokines CXCL8, CCL2 and CCL5 in multiple sclerosis patients are linked to the activity of the disease. Eur J Neurol 12:49–54.  https://doi.org/10.1111/j.1468-1331.2004.00951.x CrossRefPubMedGoogle Scholar
  34. Bassi MS et al (2018) Delayed treatment of MS is associated with high CSF levels of IL-6 and IL-8 and worse future disease course. J Neurol 265:2540–2547.  https://doi.org/10.1007/s00415-018-8994-5 CrossRefGoogle Scholar
  35. Bedoui S, Kawamura N, Straub RH, Pabst R, Yamamura T, von Horsten S (2003) Relevance of neuropeptide Y for the neuroimmune crosstalk. J Neuroimmunol 134:1–11CrossRefPubMedGoogle Scholar
  36. Benamer HT, Ahmed ES, Al-Din AS, Grosset DG (2009) Frequency and clinical patterns of multiple sclerosis in Arab countries: a systematic review. J Neurol Sci 278:1–4.  https://doi.org/10.1016/j.jns.2008.12.001 CrossRefPubMedGoogle Scholar
  37. Benesova Y et al (2009) Matrix metalloproteinase-9 and matrix metalloproteinase-2 as biomarkers of various courses in multiple sclerosis. Mult Scler 15:316–322.  https://doi.org/10.1177/1352458508099482 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Benesova Y, Vasku A, Bienertova-Vasku J (2018) Association of interleukin 6, interleukin 7 receptor alpha, and interleukin 12B gene polymorphisms with multiple sclerosis. Acta Neurol Belg 118:493–501.  https://doi.org/10.1007/s13760-018-0994-9 CrossRefPubMedGoogle Scholar
  39. Bermudez-Morales VH, Fierros G, Lopez RL, Martinez-Nava G, Flores-Aldana M, Flores-Rivera J, Hernandez-Giron C (2017) Vitamin D receptor gene polymorphisms are associated with multiple sclerosis in Mexican adults. J Neuroimmunol 306:20–24.  https://doi.org/10.1016/j.jneuroim.2017.01.009 CrossRefPubMedGoogle Scholar
  40. Bettencourt A et al (2017) The vitamin D receptor gene FokI polymorphism and multiple sclerosis in a northern Portuguese population. J Neuroimmunol 309:34–37.  https://doi.org/10.1016/j.jneuroim.2017.05.005 CrossRefPubMedGoogle Scholar
  41. Bi Y, Liu G, Yang R (2007) Th17 cell induction and immune regulatory effects. J Cell Physiol 211:273–278.  https://doi.org/10.1002/jcp.20973 CrossRefPubMedGoogle Scholar
  42. Bielekova B, Muraro PA, Golestaneh L, Pascal J, McFarland HF, Martin R (1999) Preferential expansion of autoreactive T lymphocytes from the memory T-cell pool by IL-7. J Neuroimmunol 100:115–123CrossRefPubMedGoogle Scholar
  43. Bolviken B, Celius EG, Nilsen R, Strand T (2003) Radon: a possible risk factor in multiple sclerosis. Neuroepidemiology 22:87–94.  https://doi.org/10.1159/000067102 CrossRefPubMedGoogle Scholar
  44. Brosnan CF, Cannella B, Battistini L, Raine CS (1995) Cytokine localization in multiple sclerosis lesions: correlation with adhesion molecule expression and reactive nitrogen species. Neurology 45:S16–S21CrossRefPubMedGoogle Scholar
  45. Bufler P, Gamboni-Robertson F, Azam T, Kim SH, Dinarello CA (2004) Interleukin-1 homologues IL-1F7b and IL-18 contain functional mRNA instability elements within the coding region responsive to lipopolysaccharide. Biochem J 381:503–510.  https://doi.org/10.1042/bj20040217 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Cao R et al (2010) VEGFR1-mediated pericyte ablation links VEGF and PlGF to cancer-associated retinopathy. Proc Natl Acad Sci USA 107:856–861.  https://doi.org/10.1073/pnas.0911661107 CrossRefPubMedGoogle Scholar
  47. Carnicka Z, Kollar B, Siarnik P, Krizova L, Klobucnikova K, Turcani P (2015) Sleep disorders in patients with multiple sclerosis. JCSM 11:553–557.  https://doi.org/10.5664/jcsm.4702 CrossRefPubMedGoogle Scholar
  48. Cevik B, Yigit S, Karakus N, Aksoy D, Kurt S, Ates O (2014) Association of methylenetetrahydrofolate reductase gene C677T polymorphism with multiple sclerosis in Turkish patients. J Investig Med 62:980–984.  https://doi.org/10.1097/jim.0000000000000107 CrossRefPubMedGoogle Scholar
  49. Chatzikyriakidou A, Voulgari PV, Lambropoulos A, Georgiou I, Drosos AA (2013) Validation of the TAGAP rs212389 polymorphism in rheumatoid arthritis susceptibility. Jt Bone Spine 80:543–544.  https://doi.org/10.1016/j.jbspin.2013.01.008 CrossRefGoogle Scholar
  50. Chen L, Flies DB (2013) Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13:227–242.  https://doi.org/10.1038/nri3405 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Chen Z, O’Shea JJ (2008) Th17 cells: a new fate for differentiating helper T cells. Immunol Res 41:87–102.  https://doi.org/10.1007/s12026-007-8014-9 CrossRefPubMedGoogle Scholar
  52. Chen S, Sims GP, Chen XX, Gu YY, Chen S, Lipsky PE (2007) Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol 179:1634–1647CrossRefPubMedGoogle Scholar
  53. Chen YC et al (2012) Serum levels of interleukin (IL)-18, IL-23 and IL-17 in Chinese patients with multiple sclerosis. J Neuroimmunol 243:56–60.  https://doi.org/10.1016/j.jneuroim.2011.12.008 CrossRefPubMedGoogle Scholar
  54. Chesik D, Wilczak N, De Keyser J (2008) IGF-1 regulates cAMP levels in astrocytes through a beta2-adrenergic receptor-dependant mechanism. Int J Med Sci 5:240–243CrossRefPubMedPubMedCentralGoogle Scholar
  55. Cheskis B, Freedman LP (1994) Ligand modulates the conversion of DNA-bound vitamin D3 receptor (VDR) homodimers into VDR-retinoid X receptor heterodimers. Mol Cell Biol 14:3329–3338CrossRefPubMedPubMedCentralGoogle Scholar
  56. Cierny D et al (2016) ApaI, BsmI and TaqI VDR gene polymorphisms in association with multiple sclerosis in Slovaks. Neurol Res 38:678–684.  https://doi.org/10.1080/01616412.2016.1200287 CrossRefPubMedGoogle Scholar
  57. Cierny D et al (2018) The HLA-DRB1 and HLA-DQB1 alleles are associated with multiple sclerosis disability progression in Slovak population. Neurol Res 40:607–614.  https://doi.org/10.1080/01616412.2018.1456711 CrossRefPubMedGoogle Scholar
  58. Claudio L, Kress Y, Norton WT, Brosnan CF (1989) Increased vesicular transport and decreased mitochondrial content in blood-brain barrier endothelial cells during experimental autoimmune encephalomyelitis. Am J Pathol 135:1157–1168PubMedPubMedCentralGoogle Scholar
  59. Cocco E, Mancosu C, Fadda E, Murru MR, Costa G, Murru R, Marrosu MG (2002) Lack of evidence for a role of the myelin basic protein gene in multiple sclerosis susceptibility in Sardinian patients. J Neurol 249:1552–1555.  https://doi.org/10.1007/s00415-002-0888-9 CrossRefPubMedGoogle Scholar
  60. Collison LW et al (2012) The composition and signaling of the IL-35 receptor are unconventional. Nat Immunol 13:290–299.  https://doi.org/10.1038/ni.2227 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517.  https://doi.org/10.1016/S0140-6736(08)61620-7 CrossRefPubMedGoogle Scholar
  62. Connelly TM et al (2014) T-cell activation Rho GTPase-activating protein expression varies with inflammation location and severity in Crohn’s disease. J Surg Res 190:457–464.  https://doi.org/10.1016/j.jss.2014.01.019 CrossRefPubMedGoogle Scholar
  63. Costa C et al (2015) Expression of semaphorin 3A, semaphorin 7A and their receptors in multiple sclerosis lesions. Mult Scler 21:1632–1643.  https://doi.org/10.1177/1352458515599848 CrossRefPubMedGoogle Scholar
  64. Dastmalchi R, Ghafouri-Fard S, Omrani MD, Mazdeh M, Sayad A, Taheri M (2018) Dysregulation of long non-coding RNA profile in peripheral blood of multiple sclerosis patients. Mult Scler Relat Disord 25:219–226.  https://doi.org/10.1016/j.msard.2018.07.044 CrossRefPubMedGoogle Scholar
  65. de Jong BA et al (2002) Production of IL-1beta and IL-1Ra as risk factors for susceptibility and progression of relapse-onset multiple sclerosis. J Neuroimmunol 126:172–179CrossRefPubMedGoogle Scholar
  66. de Weerd NA, Samarajiwa SA, Hertzog PJ (2007) Type I interferon receptors: biochemistry and biological functions. J Biol Chem 282:20053–20057.  https://doi.org/10.1074/jbc.R700006200 CrossRefPubMedGoogle Scholar
  67. Dianatpour A, Ghafouri-Fard S (2017) The Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks. Int J Mol Cell Med 6:1–12PubMedPubMedCentralGoogle Scholar
  68. Dimitrijevic M, Stanojevic S (2013) The intriguing mission of neuropeptide Y in the immune system. Amino Acids 45:41–53.  https://doi.org/10.1007/s00726-011-1185-7 CrossRefPubMedGoogle Scholar
  69. DiPaolo RJ, Glass DD, Bijwaard KE, Shevach EM (2005) CD4+ CD25+ T cells prevent the development of organ-specific autoimmune disease by inhibiting the differentiation of autoreactive effector T cells. J Immunol 175:7135–7142CrossRefPubMedGoogle Scholar
  70. Dong Z, Zhou L, Del Villar K, Ghanevati M, Tashjian V, Miller CA (2005) JIP1 regulates neuronal apoptosis in response to stress. Brain Res 134:282–293.  https://doi.org/10.1016/j.molbrainres.2004.10.039 CrossRefGoogle Scholar
  71. Drulovic J et al (2003) Decreased frequency of the tumor necrosis factor alpha -308 allele in Serbian patients with multiple sclerosis. Eur Neurol 50:25–29.  https://doi.org/10.1159/000070855 CrossRefPubMedGoogle Scholar
  72. Duddy M et al (2007) Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J Immunol 178:6092–6099CrossRefPubMedGoogle Scholar
  73. Dvorak HF, Brown LF, Detmar M, Dvorak AM (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146:1029–1039PubMedPubMedCentralGoogle Scholar
  74. Eaton WW, Rose NR, Kalaydjian A, Pedersen MG, Mortensen PB (2007) Epidemiology of autoimmune diseases in Denmark. J Autoimmun 29:1–9.  https://doi.org/10.1016/j.jaut.2007.05.002 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Eftekharian MM et al (2016a) RAR-related orphan receptor A (RORA): a new susceptibility gene for multiple sclerosis. J Neurol Sci 369:259–262.  https://doi.org/10.1016/j.jns.2016.08.045 CrossRefPubMedGoogle Scholar
  76. Eftekharian MM et al (2016b) Single nucleotide polymorphisms in the FOXP3 gene are associated with increased risk of relapsing-remitting multiple sclerosis. Hum Antibod 24:85–90.  https://doi.org/10.3233/hab-160299 CrossRefGoogle Scholar
  77. Eftekharian MM et al (2017a) Phospholipase D1 expression analysis in relapsing-remitting multiple sclerosis patients. Neurol Sci 38:865–872.  https://doi.org/10.1007/s10072-017-2857-1 CrossRefPubMedGoogle Scholar
  78. Eftekharian MM et al (2017b) Expression analysis of long non-coding RNAs in the blood of multiple sclerosis patients. J Mol Neurosci 63:333–341.  https://doi.org/10.1007/s12031-017-0982-1 CrossRefPubMedGoogle Scholar
  79. Eixarch H, Gutierrez-Franco A, Montalban X, Espejo C (2013) Semaphorins 3A and 7A: potential immune and neuroregenerative targets in multiple sclerosis. Trends Mol Med 19:157–164.  https://doi.org/10.1016/j.molmed.2013.01.003 CrossRefPubMedGoogle Scholar
  80. El Sharkawi FZ, Ali SA, Hegazy MI, Atya HB (2019) The combined effect of IL-17F and CCL20 gene polymorphism in susceptibility to multiple sclerosis in Egypt. Gene 685:164–169.  https://doi.org/10.1016/j.gene.2018.11.006 CrossRefPubMedGoogle Scholar
  81. Elhami SR, Mohammad K, Sahraian MA, Eftekhar H (2011) A 20-year incidence trend (1989-2008) and point prevalence (March 20, 2009) of multiple sclerosis in Tehran, Iran: a population-based study. Neuroepidemiology 36:141–147.  https://doi.org/10.1159/000324708 CrossRefPubMedGoogle Scholar
  82. Etemadifar M, Abtahi SH (2012) Multiple sclerosis in Isfahan, Iran: Past, Present and Future. Int J Prev Med 3:301–302PubMedPubMedCentralGoogle Scholar
  83. Etemadifar M, Sajjadi S, Nasr Z, Firoozeei TS, Abtahi SH, Akbari M, Fereidan-Esfahani M (2013) Epidemiology of multiple sclerosis in Iran: a systematic review. Eur Neurol 70:356–363.  https://doi.org/10.1159/000355140 CrossRefPubMedGoogle Scholar
  84. Farrokhi M, Rezaei A, Amani-Beni A, Etemadifar M, Kouchaki E, Zahedi A (2015) Increased serum level of IL-37 in patients with multiple sclerosis and neuromyelitis optica. Acta Neurol Belg 115:609–614.  https://doi.org/10.1007/s13760-015-0491-3 CrossRefPubMedGoogle Scholar
  85. Farzi A, Reichmann F, Holzer P (2015) The homeostatic role of neuropeptide Y in immune function and its impact on mood and behaviour. Acta Physiol 213:603–627.  https://doi.org/10.1111/apha.12445 CrossRefGoogle Scholar
  86. Fedetz M, Alcina A, Fernandez O, Guerrero M, Delgado C, Matesanz F (2002) Analysis of -631 and -475 interleukin-2 promoter single nucleotide polymorphisms in multiple sclerosis. Eur J Immunogenet 29:389–390CrossRefPubMedGoogle Scholar
  87. Fernandez-Morera JL et al (2008a) Soluble MHC class I chain-related protein B serum levels correlate with disease activity in relapsing-remitting multiple sclerosis. Hum Immunol 69:235–240.  https://doi.org/10.1016/j.humimm.2008.01.021 CrossRefPubMedGoogle Scholar
  88. Fernandez-Morera JL et al (2008b) Genetic influence of the nonclassical major histocompatibility complex class I molecule MICB in multiple sclerosis susceptibility. Tissue Antigens 72:54–59.  https://doi.org/10.1111/j.1399-0039.2008.01066.x CrossRefPubMedGoogle Scholar
  89. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4 + CD25 + regulatory T cells. Nat Immunol 4:330–336.  https://doi.org/10.1038/ni904 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Freeman GJ et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034CrossRefPubMedPubMedCentralGoogle Scholar
  91. Frohman TC, Beh SC, Kildebeck EJ, Narayan R, Treadaway K, Frohman EM (2016) Neurotherapeutic strategies for multiple sclerosis. Neurol Clin 34:483–523.  https://doi.org/10.1016/j.ncl.2016.05.001 CrossRefPubMedGoogle Scholar
  92. Ganjalikhani Hakemi M, Ghaedi K, Andalib A, Hosseini M, Rezaei A (2011) Optimization of human Th17 cell differentiation in vitro: evaluating different polarizing factors. Vitro Cell Dev Biol Anim 47:581–592.  https://doi.org/10.1007/s11626-011-9444-1 CrossRefGoogle Scholar
  93. Ghadiri N et al (2018) Analysis of the expression of mir-34a, mir-199a, mir-30c and mir-19a in peripheral blood CD4+T lymphocytes of relapsing-remitting multiple sclerosis patients. Gene 659:109–117.  https://doi.org/10.1016/j.gene.2018.03.035 CrossRefPubMedGoogle Scholar
  94. Ghandehari K, Riasi HR, Nourian A, Boroumand AR (2010) Prevalence of multiple sclerosis in north east of Iran. Mult Scler 16:1525–1526.  https://doi.org/10.1177/1352458510372150 CrossRefPubMedGoogle Scholar
  95. Golalipour M, Maleki Z, Farazmandfar T, Shahbazi M (2017) PER3 VNTR polymorphism in multiple sclerosis: a new insight to impact of sleep disturbances in MS. Mult Scler Relat Disord 17:84–86.  https://doi.org/10.1016/j.msard.2017.07.005 CrossRefPubMedGoogle Scholar
  96. Hamedani SY et al (2016) Up regulation of MMP9 gene expression in female patients with multiple sclerosis. Hum Antibod 24:59–64.  https://doi.org/10.3233/hab-160292 CrossRefGoogle Scholar
  97. Hamid KM et al (2016) Quantitative evaluation of BAFF, HMGB1, TLR 4 AND TLR 7 expression in patients with relapsing remitting multiple sclerosis. Iran J Allergy Asthma Immunol 15:75–81PubMedGoogle Scholar
  98. Harandi AA, Harandi AA, Pakdaman H, Sahraian MA (2014) Vitamin D and multiple sclerosis. Iran J Neurol 13:1–6PubMedPubMedCentralGoogle Scholar
  99. Hasan S et al (2014) A human sleep homeostasis phenotype in mice expressing a primate-specific PER3 variable-number tandem-repeat coding-region polymorphism. FASEB J 28:2441–2454.  https://doi.org/10.1096/fj.13-240135 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Hasheminia SJ, Zarkesh-Esfahani SH, Tolouei S, Shaygannejad V, Shirzad H, Hashemzadeh Chaleshtory M (2014) Toll like receptor 2 and 4 expression in peripheral blood mononuclear cells of multiple sclerosis patients. Iran J Immunol 11:74–83PubMedGoogle Scholar
  101. Hasheminia SJ, Tolouei S, Zarkesh-Esfahani SH, Shaygannejad V, Shirzad HA, Torabi R, Hashem Zadeh Chaloshtory M (2015) Cytokines gene expression in newly diagnosed multiple sclerosis patients. Iran J Allergy Asthma Immunol 14:208–216PubMedGoogle Scholar
  102. Hassanzadeh G, Hosseini Quchani S, Sahraian MA, Abolhassani F, Sadighi Gilani MA, Dehghan Tarzjani M, Atoof F (2016) Leukocyte gene expression and plasma concentration in multiple sclerosis: alteration of transforming growth factor-betas, claudin-11, and matrix metalloproteinase-2. Cell Mol Neurobiol 36:865–872.  https://doi.org/10.1007/s10571-015-0270-y CrossRefGoogle Scholar
  103. He YW, Malek TR (1996) Interleukin-7 receptor alpha is essential for the development of gamma delta + T cells, but not natural killer cells. J Exp Med 184:289–293CrossRefPubMedGoogle Scholar
  104. He B, Navikas V, Lundahl J, Soderstrom M, Hillert J (1995) Tumor necrosis factor alpha-308 alleles in multiple sclerosis and optic neuritis. J Neuroimmunol 63:143–147CrossRefPubMedGoogle Scholar
  105. Heidari M, Behmanesh M, Sahraian MA (2011) Variation in SNPs of the IL7Ra gene is associated with multiple sclerosis in the Iranian population. Immunol Investig 40:279–289.  https://doi.org/10.3109/08820139.2010.540287 CrossRefGoogle Scholar
  106. Heidary M et al (2014) The analysis of correlation between IL-1B gene expression and genotyping in multiple sclerosis patients. J Neurol Sci 343:41–45.  https://doi.org/10.1016/j.jns.2014.05.013 CrossRefPubMedGoogle Scholar
  107. Hemminki K, Li X, Sundquist J, Hillert J, Sundquist K (2009) Risk for multiple sclerosis in relatives and spouses of patients diagnosed with autoimmune and related conditions. Neurogenetics 10:5–11.  https://doi.org/10.1007/s10048-008-0156-y CrossRefPubMedGoogle Scholar
  108. Hensiek AE et al (2002) HLA-DR 15 is associated with female sex and younger age at diagnosis in multiple sclerosis. J Neurol Neurosurg Psychiatry 72:184–187CrossRefPubMedPubMedCentralGoogle Scholar
  109. Hernan MA, Olek MJ, Ascherio A (2001) Cigarette smoking and incidence of multiple sclerosis. Am J Epidemiol 154:69–74CrossRefPubMedGoogle Scholar
  110. Heydarpour P, Amini H, Khoshkish S, Seidkhani H, Sahraian MA, Yunesian M (2014) Potential impact of air pollution on multiple sclerosis in Tehran. Iran Neuroepidemiol 43:233–238.  https://doi.org/10.1159/000368553 CrossRefGoogle Scholar
  111. Honardoost MA, Kiani-Esfahani A, Ghaedi K, Etemadifar M, Salehi M (2014) miR-326 and miR-26a, two potential markers for diagnosis of relapse and remission phases in patient with relapsing-remitting multiple sclerosis. Gene 544:128–133.  https://doi.org/10.1016/j.gene.2014.04.069 CrossRefPubMedGoogle Scholar
  112. Hoyer KK, Dooms H, Barron L, Abbas AK (2008) Interleukin-2 in the development and control of inflammatory disease. Immunol Rev 226:19–28.  https://doi.org/10.1111/j.1600-065x.2008.00697.x CrossRefPubMedGoogle Scholar
  113. Huan J et al (2005) Decreased FOXP3 levels in multiple sclerosis patients. J Neurosci Res 81:45–52.  https://doi.org/10.1002/jnr.20522 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Iacobaeus E et al (2011) The expression of VEGF-A is down regulated in peripheral blood mononuclear cells of patients with secondary progressive multiple sclerosis. PloS ONE 6:e19138.  https://doi.org/10.1371/journal.pone.0019138 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Imamura K et al (2014) Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol Cell 53:393–406.  https://doi.org/10.1016/j.molcel.2014.01.009 CrossRefPubMedGoogle Scholar
  116. Iwakura Y, Ishigame H (2006) The IL-23/IL-17 axis in inflammation. J Clin Investig 116:1218–1222.  https://doi.org/10.1172/jci28508 CrossRefPubMedGoogle Scholar
  117. Izad M, Vodjgani M, Niknam MH, Amirzargar A, Shahbeigi S, Heidari AB, Keramatipour M (2010) Cytokines genes polymorphisms and risk of multiple sclerosis. Am J Med Sci 339:327–331.  https://doi.org/10.1097/MAJ.0b013e3181cef1a1 CrossRefPubMedGoogle Scholar
  118. Izadi S, Nikseresht A, Sharifian M, Sahraian MA, Jahromi AH, Aghighi M, Heidary A (2014) Significant increase in the prevalence of multiple sclerosis in iran in 2011. Iran J Med Sci 39:152–153PubMedPubMedCentralGoogle Scholar
  119. Jacob S, Al-Kandari A, Alroughani R, Al-Temaimi R (2017) Assessment of plasma biomarkers for their association with multiple sclerosis progression. J Neuroimmunol 305:5–8.  https://doi.org/10.1016/j.jneuroim.2017.01.008 CrossRefPubMedGoogle Scholar
  120. Jafari N, Shaghaghi H, Mahmoodi D, Shirzad Z, Alibeiki F, Bohlooli S, Dogaheh HP (2015) Overexpression of microRNA biogenesis machinery: Drosha, DGCR1 and Dicer in multiple sclerosis patients. J Clin Neurosci 22:200–203.  https://doi.org/10.1016/j.jocn.2014.06.106 CrossRefPubMedGoogle Scholar
  121. Jafarzadeh A et al (2014) Higher circulating levels of chemokine CCL20 in patients with multiple sclerosis: evaluation of the influences of chemokine gene polymorphism, gender, treatment and disease pattern. J Mol Neurosci 53:500–505.  https://doi.org/10.1007/s12031-013-0214-2 CrossRefPubMedGoogle Scholar
  122. Jafarzadeh A et al (2015) Circulating levels of interleukin-35 in patients with multiple sclerosis: evaluation of the influences of FOXP3 gene polymorphism and treatment program. J Mol Neurosci 55:891–897.  https://doi.org/10.1007/s12031-014-0443-z CrossRefPubMedGoogle Scholar
  123. Javaid MA, Abdallah MN, Ahmed AS, Sheikh Z (2013) Matrix metalloproteinases and their pathological upregulation in multiple sclerosis: an overview. Acta Neurol Belg 113:381–390.  https://doi.org/10.1007/s13760-013-0239-x CrossRefPubMedGoogle Scholar
  124. Javan MR, Aslani S, Zamani MR, Rostamnejad J, Asadi M, Farhoodi M, Nicknam MH (2016) Downregulation of immunosuppressive molecules, PD-1 and PD-L1 but not PD-L2, in the patients with multiple sclerosis. Iran J Allergy Asthma Immunol 15:296–302PubMedGoogle Scholar
  125. Javan MR, Shahraki S, Safa A, Zamani MR, Salmaninejad A, Aslani S (2017) An interleukin 12 B single nucleotide polymorphism increases IL-12p40 production and is associated with increased disease susceptibility in patients with relapsing-remitting multiple sclerosis. Neurol Res 39:435–441.  https://doi.org/10.1080/01616412.2017.1301623 CrossRefPubMedGoogle Scholar
  126. Jazaeri A, Vallian S (2017) Association of rs1738074 polymorphism of TAGAP gene with susceptibility to multiple sclerosis in the Iranian population. Neurosci Lett 648:66–69.  https://doi.org/10.1016/j.neulet.2017.03.041 CrossRefPubMedGoogle Scholar
  127. Kamali-Sarvestani E, Nikseresht AR, Aliparasti MR, Vessal M (2006) IL-8 (-251 A/T) and CXCR1 (+1208 C/T) gene polymorphisms and risk of multiple sclerosis in Iranian patients. Neurosci Lett 404:159–162.  https://doi.org/10.1016/j.neulet.2006.05.033 CrossRefPubMedGoogle Scholar
  128. Kang JH, Hwang SM, Chung IY (2015) S100A8, S100A9 and S100A12 activate airway epithelial cells to produce MUC5AC via extracellular signal-regulated kinase and nuclear factor-kappaB pathways. Immunology 144:79–90.  https://doi.org/10.1111/imm.12352 CrossRefPubMedGoogle Scholar
  129. Kantarci OH, Atkinson EJ, Hebrink DD, McMurray CT, Weinshenker BG (2000) Association of two variants in IL-1beta and IL-1 receptor antagonist genes with multiple sclerosis. J Neuroimmunol 106:220–227CrossRefPubMedGoogle Scholar
  130. Karami M, Mehrabi F, Allameh A, Pahlevan Kakhki M, Amiri M, Emami Aleagha MS (2017) Klotho gene expression decreases in peripheral blood mononuclear cells (PBMCs) of patients with relapsing-remitting multiple sclerosis. J Neurol Sci 381:305–307.  https://doi.org/10.1016/j.jns.2017.09.012 CrossRefPubMedGoogle Scholar
  131. Kasper LH, Shoemaker J (2010) Multiple sclerosis immunology: the healthy immune system vs the MS immune system. Neurology 74(Suppl 1):S2–S8.  https://doi.org/10.1212/WNL.0b013e3181c97c8f CrossRefPubMedGoogle Scholar
  132. Khosravi A, Javan B, Tabatabaiefar MA, Ebadi H, Fathi D, Shahbazi M (2015) Association of interleukin-1 gene cluster polymorphisms and haplotypes with multiple sclerosis in an Iranian population. J Neuroimmunol 288:114–119.  https://doi.org/10.1016/j.jneuroim.2015.09.009 CrossRefPubMedGoogle Scholar
  133. Kikuchi S, Niino M, Fukazawa T, Yabe I, Tashiro K (2002) An assessment of the association between IL-2 gene polymorphisms and Japanese patients with multiple sclerosis. J Neurol Sci 205:47–50.  https://doi.org/10.1016/s0022-510x(02)00307-6 CrossRefPubMedGoogle Scholar
  134. Klunker S et al (2009) Transcription factors RUNX1 and RUNX3 in the induction and suppressive function of Foxp3 + inducible regulatory T cells. J Exp Med 206:2701–2715.  https://doi.org/10.1084/jem.20090596 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Kollaee A, Ghaffarpor M, Pourmahmoudian H, Shahbazi M, Zamani M (2011) Investigation of CD24 and its expression in Iranian relapsing-remitting multiple sclerosis. Int J Neurosci 121:684–690.  https://doi.org/10.3109/00207454.2011.610529 CrossRefPubMedGoogle Scholar
  136. Kotake Y et al (2016) Long non-coding RNA, PANDA, contributes to the stabilization of p53 tumor suppressor protein. Anticancer Res 36:1605–1611PubMedGoogle Scholar
  137. Kouchaki E, Shahreza BO, Faraji S, Nikoueinejad H, Sehat M (2016) The association between vascular endothelial growth factor-related factors with severity of multiple sclerosis. Iran J Allergy Asthma Immunol 15:204–211PubMedGoogle Scholar
  138. Kouchaki E, Tamtaji OR, Dadgostar E, Karami M, Nikoueinejad H, Akbari H (2017) Correlation of serum levels of IL-33, IL-37, soluble form of vascular endothelial growth factor receptor 2 (VEGFR2), and circulatory frequency of VEGFR2-expressing cells with multiple sclerosis severity. Iran J Allergy Asthma Immunol 16:329–337PubMedGoogle Scholar
  139. Kroner A, Mehling M, Hemmer B, Rieckmann P, Toyka KV, Maurer M, Wiendl H (2005) A PD-1 polymorphism is associated with disease progression in multiple sclerosis. Ann Neurol 58:50–57.  https://doi.org/10.1002/ana.20514 CrossRefPubMedGoogle Scholar
  140. Kroner A, Grimm A, Johannssen K, Maurer M, Wiendl H (2007) The genetic influence of the nonclassical MHC molecule HLA-G on multiple sclerosis. Hum Immunol 68:422–425.  https://doi.org/10.1016/j.humimm.2007.01.012 CrossRefPubMedGoogle Scholar
  141. Kubo M, Hanada T, Yoshimura A (2003) Suppressors of cytokine signaling and immunity. Nat Immunol 4:1169–1176.  https://doi.org/10.1038/ni1012 CrossRefPubMedGoogle Scholar
  142. Kuro-o M et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51.  https://doi.org/10.1038/36285 CrossRefPubMedGoogle Scholar
  143. Kurtzke JF, Beebe GW, Nagler B, Kurland LT, Auth TL (1977) Studies on the natural history of multiple sclerosis–8. Early prognostic features of the later course of the illness. J Chron Dis 30:819–830CrossRefPubMedGoogle Scholar
  144. La Russa A et al (2010) Single nucleotide polymorphism in the MMP-9 gene is associated with susceptibility to develop multiple sclerosis in an Italian case-control study. J Neuroimmunol 225:175–179.  https://doi.org/10.1016/j.jneuroim.2010.04.016 CrossRefPubMedGoogle Scholar
  145. Lalive PH, Kreutzfeldt M, Devergne O, Metz I, Bruck W, Merkler D, Pot C (2017) Increased interleukin-27 cytokine expression in the central nervous system of multiple sclerosis patients. J Neuroinflam 14:144.  https://doi.org/10.1186/s12974-017-0919-1 CrossRefGoogle Scholar
  146. Larsen CG, Anderson AO, Appella E, Oppenheim JJ, Matsushima K (1989) The neutrophil-activating protein (NAP-1) is also chemotactic for T lymphocytes. Science 243:1464–1466CrossRefPubMedGoogle Scholar
  147. Latchman Y et al (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2:261–268.  https://doi.org/10.1038/85330 CrossRefPubMedGoogle Scholar
  148. Li Z et al (2014) The long noncoding RNA THRIL regulates TNFalpha expression through its interaction with hnRNPL. Proc Natl Acad Sci USA 111:1002–1007.  https://doi.org/10.1073/pnas.1313768111 CrossRefPubMedGoogle Scholar
  149. Li R et al (2017) Serum CCL20 and its association with SIRT1 activity in multiple sclerosis patients. J Neuroimmunol 313:56–60.  https://doi.org/10.1016/j.jneuroim.2017.10.013 CrossRefPubMedGoogle Scholar
  150. Lichtinghagen R, Seifert T, Kracke A, Marckmann S, Wurster U, Heidenreich F (1999) Expression of matrix metalloproteinase-9 and its inhibitors in mononuclear blood cells of patients with multiple sclerosis. J Neuroimmunol 99:19–26CrossRefPubMedGoogle Scholar
  151. Liu H, Huang J, Dou M, Liu Y, Xiao B, Liu X, Huang Z (2017) Variants in the IL7RA gene confer susceptibility to multiple sclerosis in Caucasians: evidence based on 9734 cases and 10436 controls. Sci Rep 7:1207.  https://doi.org/10.1038/s41598-017-01345-8 CrossRefPubMedPubMedCentralGoogle Scholar
  152. Loma I, Heyman R (2011) Multiple sclerosis: pathogenesis and treatment. Curr Neuropharmacol 9:409–416.  https://doi.org/10.2174/157015911796557911 CrossRefPubMedPubMedCentralGoogle Scholar
  153. Lucotte G, Bathelier C, Mercier G (2000) TNF-alpha polymorphisms in multiple sclerosis: no association with -238 and -308 promoter alleles, but the microsatellite allele a11 is associated with the disease in French patients. Mult Scler 6:78–80.  https://doi.org/10.1177/135245850000600204 CrossRefPubMedGoogle Scholar
  154. Lund BT et al (2004) Increased CXCL8 (IL-8) expression in multiple sclerosis. J Neuroimmunol 155:161–171.  https://doi.org/10.1016/j.jneuroim.2004.06.008 CrossRefPubMedGoogle Scholar
  155. Mahmood DF, Abderrazak A, El Hadri K, Simmet T, Rouis M (2013) The thioredoxin system as a therapeutic target in human health and disease. Antioxid Redox Signal 19:1266–1303.  https://doi.org/10.1089/ars.2012.4757 CrossRefPubMedGoogle Scholar
  156. Mahmoudian E, Khalilnezhad A, Gharagozli K, Amani D (2017) Thioredoxin-1, redox factor-1 and thioredoxin-interacting protein, mRNAs are differentially expressed in multiple sclerosis patients exposed and non-exposed to interferon and immunosuppressive treatments. Gene 634:29–36.  https://doi.org/10.1016/j.gene.2017.08.021 CrossRefPubMedGoogle Scholar
  157. Matejcikova Z, Mares J, Sladkova V, Svrcinova T, Vyslouzilova J, Zapletalova J, Kanovsky P (2017) Cerebrospinal fluid and serum levels of interleukin-8 in patients with multiple sclerosis and its correlation with Q-albumin. Mult Scler Relat Disord 14:12–15.  https://doi.org/10.1016/j.msard.2017.03.007 CrossRefPubMedGoogle Scholar
  158. Mazrouei F et al (2016) Association of TIM-1 5383–5397ins/del and TIM-3 -1541C > T polymorphisms with multiple sclerosis in Isfahan population. Int J Immunogenet 43:131–134.  https://doi.org/10.1111/iji.12264 CrossRefPubMedGoogle Scholar
  159. Meabed MH, Taha GM, Mohamed SO, El-Hadidy KS (2007) Autoimmune thrombocytopenia: flow cytometric determination of platelet-associated CD154/CD40L and CD40 on peripheral blood T and B lymphocytes. Hematology 12:301–307.  https://doi.org/10.1080/10245330701383957 CrossRefPubMedGoogle Scholar
  160. Miteva L, Trenova A, Slavov G, Stanilova S (2019) IL12B gene polymorphisms have sex-specific effects in relapsing-remitting multiple sclerosis. Acta Neurol Belg 119:83–93.  https://doi.org/10.1007/s13760-018-01066-3 CrossRefPubMedGoogle Scholar
  161. Mohammadi N, Adib M, Alsahebfosoul F, Kazemi M, Etemadifar M (2016a) An investigation into the association between HLA-G 14 bp insertion/deletion polymorphism and multiple sclerosis susceptibility. J Neuroimmunol 290:115–118.  https://doi.org/10.1016/j.jneuroim.2015.11.019 CrossRefPubMedGoogle Scholar
  162. Mohammadi SM, Shirvani Farsani Z, Dosti R, Sahraian MA, Behmanesh M (2016b) Association study of two functional single nucleotide polymorphisms of neuropeptide y gene with multiple sclerosis. Neuropeptides 60:45–50.  https://doi.org/10.1016/j.npep.2016.08.004 CrossRefPubMedGoogle Scholar
  163. Mondino A, Mueller DL (2007) mTOR at the crossroads of T cell proliferation and tolerance. Semin Immunol 19:162–172.  https://doi.org/10.1016/j.smim.2007.02.008 CrossRefPubMedPubMedCentralGoogle Scholar
  164. Monsalve DM, Merced T, Fernandez IF, Blanco S, Vazquez-Cedeira M, Lazo PA (2013) Human VRK2 modulates apoptosis by interaction with Bcl-xL and regulation of BAX gene expression. Cell Death Dis 4:e513.  https://doi.org/10.1038/cddis.2013.40 CrossRefPubMedPubMedCentralGoogle Scholar
  165. Moosazadeh M, Esmaeili R, Mehdi Nasehi M, Abedi G, Afshari M, Farshidi F, Kheradmand M (2017) Prevalence of familial multiple sclerosis in Iran: a systematic review and meta-analysis. Iran J Neurol 16:90–95PubMedPubMedCentralGoogle Scholar
  166. Morris SW et al (1992) Assignment of the genes encoding human interleukin-8 receptor types 1 and 2 and an interleukin-8 receptor pseudogene to chromosome 2q35. Genomics 14:685–691CrossRefPubMedGoogle Scholar
  167. Morsaljahan Z, Rafiei A, Valadan R, Abedini M, Pakseresht M, Khajavi R (2017) Association between interleukin-32 polymorphism and multiple sclerosis. J Neurol Sci 379:144–150.  https://doi.org/10.1016/j.jns.2017.05.045 CrossRefPubMedGoogle Scholar
  168. Mrissa NF et al (2013) Association of methylenetetrahydrofolate reductase A1298C polymorphism but not of C677T with multiple sclerosis in Tunisian patients. Clin Neurol Neurosurg 115:1657–1660.  https://doi.org/10.1016/j.clineuro.2013.02.025 CrossRefPubMedGoogle Scholar
  169. Munger KL, Chitnis T, Ascherio A (2009) Body size and risk of MS in two cohorts of US women. Neurology 73:1543–1550.  https://doi.org/10.1212/WNL.0b013e3181c0d6e0 CrossRefPubMedPubMedCentralGoogle Scholar
  170. Munoz-Culla M, Irizar H, Otaegui D (2013) The genetics of multiple sclerosis: review of current and emerging candidates. Appl Clin Genet 6:63–73.  https://doi.org/10.2147/TACG.S29107 CrossRefPubMedPubMedCentralGoogle Scholar
  171. Naghavian R, Ghaedi K, Kiani-Esfahani A, Ganjalikhani-Hakemi M, Etemadifar M, Nasr-Esfahani MH (2015) miR-141 and miR-200a, revelation of new possible players in modulation of Th17/Treg differentiation and pathogenesis of multiple sclerosis. PLoS ONE 10:e0124555.  https://doi.org/10.1371/journal.pone.0124555 CrossRefPubMedPubMedCentralGoogle Scholar
  172. Narooie-Nejad M, Moossavi M, Torkamanzehi A, Moghtaderi A (2015) Positive association of vitamin D receptor gene variations with multiple sclerosis in South East Iranian population. BioMed Res Int 2015:427519.  https://doi.org/10.1155/2015/427519 CrossRefPubMedPubMedCentralGoogle Scholar
  173. Nejati P, Attar M, Rahimian M, Fathi D, Shahbazi M (2017) Combination of myelin basic protein gene polymorphisms with HLA-DRB1*1501 in Iranian patients with multiple sclerosis. Iran J Immunol 14:231–239PubMedGoogle Scholar
  174. Neufert C, Becker C, Wirtz S, Fantini MC, Weigmann B, Galle PR, Neurath MF (2007) IL-27 controls the development of inducible regulatory T cells and Th17 cells via differential effects on STAT1. Eur J Immunol 37:1809–1816.  https://doi.org/10.1002/eji.200636896 CrossRefPubMedGoogle Scholar
  175. Nicoletti A et al (2016) Risk factors in multiple sclerosis: a population-based case-control study in sicily background and methods. Neurol Sci 37:1931–1937.  https://doi.org/10.1007/s10072-016-2685-8 CrossRefPubMedGoogle Scholar
  176. Nold MF, Nold-Petry CA, Zepp JA, Palmer BE, Bufler P, Dinarello CA (2010) IL-37 is a fundamental inhibitor of innate immunity. Nat Immunol 11:1014–1022.  https://doi.org/10.1038/ni.1944 CrossRefPubMedPubMedCentralGoogle Scholar
  177. Oda JM, Hirata BK, Guembarovski RL, Watanabe MA (2013) Genetic polymorphism in FOXP3 gene: imbalance in regulatory T-cell role and development of human diseases. J Genet 92:163–171CrossRefPubMedGoogle Scholar
  178. Oliveira SR et al (2012) Oxidative stress in multiple sclerosis patients in clinical remission: association with the expanded disability status scale. J Neurol Sci 321:49–53.  https://doi.org/10.1016/j.jns.2012.07.045 CrossRefPubMedGoogle Scholar
  179. Ortiz GG et al (2013) Immunology and oxidative stress in multiple sclerosis: clinical and basic approach. Clin Dev Immunol 2013:708659.  https://doi.org/10.1155/2013/708659 CrossRefPubMedPubMedCentralGoogle Scholar
  180. Osland TM, Bjorvatn BR, Steen VM, Pallesen S (2011) Association study of a variable-number tandem repeat polymorphism in the clock gene PERIOD3 and chronotype in Norwegian university students. Chronobiol Int 28:764–770.  https://doi.org/10.3109/07420528.2011.607375 CrossRefPubMedGoogle Scholar
  181. Pahlevan Kakhki M, Rakhshi N, Heidary M, Behmanesh M, Nikravesh A (2015) Expression of suppressor of cytokine signaling 1 (SOCS1) gene dramatically increases in relapsing-remitting multiple sclerosis. J Neurol Sci 350:40–45.  https://doi.org/10.1016/j.jns.2015.02.005 CrossRefPubMedGoogle Scholar
  182. Pahlevan Kakhki M, Nikravesh A, Shirvani Farsani Z, Sahraian MA, Behmanesh M (2018) HOTAIR but not ANRIL long non-coding RNA contributes to the pathogenesis of multiple sclerosis. Immunology 153:479–487.  https://doi.org/10.1111/imm.12850 CrossRefPubMedGoogle Scholar
  183. Palmer DC, Restifo NP (2009) Suppressors of cytokine signaling (SOCS) in T cell differentiation, maturation, and function. Trends Immunol 30:592–602.  https://doi.org/10.1016/j.it.2009.09.009 CrossRefPubMedPubMedCentralGoogle Scholar
  184. Parchami Barjui S, Reiisi S, Bayati A (2017) Human glutathione s-transferase enzyme gene variations and risk of multiple sclerosis in Iranian population cohort. Mult Scler Relat Disord 17:41–46.  https://doi.org/10.1016/j.msard.2017.06.016 CrossRefPubMedGoogle Scholar
  185. Pawlak-Adamska E et al (2017) PD-1 gene polymorphic variation is linked with first symptom of disease and severity of relapsing-remitting form of MS. J Neuroimmunol 305:115–127.  https://doi.org/10.1016/j.jneuroim.2017.02.006 CrossRefPubMedGoogle Scholar
  186. Pennisi G et al (2011) Redox regulation of cellular stress response in multiple sclerosis. Biochem Pharmacol 82:1490–1499.  https://doi.org/10.1016/j.bcp.2011.07.092 CrossRefPubMedGoogle Scholar
  187. Pette M, Fujita K, Kitze B, Whitaker JN, Albert E, Kappos L, Wekerle H (1990) Myelin basic protein-specific T lymphocyte lines from MS patients and healthy individuals. Neurology 40:1770–1776CrossRefPubMedGoogle Scholar
  188. Prod’homme T, Weber MS, Steinman L, Zamvil SS (2006) A neuropeptide in immune-mediated inflammation, Y? Trends Immunol 27:164–167.  https://doi.org/10.1016/j.it.2006.02.003 CrossRefPubMedGoogle Scholar
  189. Proud CG (2002) Regulation of mammalian translation factors by nutrients. Eur J Biochem 269:5338–5349CrossRefPubMedGoogle Scholar
  190. Qiu LJ et al (2015) Decreased SOCS1 mRNA expression levels in peripheral blood mononuclear cells from patients with systemic lupus erythematosus in a Chinese population. Clini Exp Med 15:261–267.  https://doi.org/10.1007/s10238-014-0309-2 CrossRefGoogle Scholar
  191. Rahimi Z et al (2016) Functional promoter polymorphisms of MMP-2 C-735T and MMP-9 C-1562T and their synergism with MMP-7 A-181G in multiple sclerosis. Immunol Investig 45:543–552.  https://doi.org/10.1080/08820139.2016.1180303 CrossRefGoogle Scholar
  192. Rahimi M et al (2018) Soluble receptor for advanced glycation end products (sRAGE) is up-regulated in multiple sclerosis patients treated with interferon beta-1a. Cell Physiol Biochem 46:561–567.  https://doi.org/10.1159/000488622 CrossRefPubMedGoogle Scholar
  193. Rane S et al (2009) Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res 104:879–886.  https://doi.org/10.1161/circresaha.108.193102 CrossRefPubMedPubMedCentralGoogle Scholar
  194. Rasol HA, Helmy H, El-Mously S, Aziz MA, El Bahaie H (2016) Vascular endothelial growth factor-A mRNA gene expression in clinical phases of multiple sclerosis. Ann Clin Biochem 53:252–258.  https://doi.org/10.1177/0004563215584957 CrossRefPubMedGoogle Scholar
  195. Regev K et al (2016) Comprehensive evaluation of serum microRNAs as biomarkers in multiple sclerosis Neurology(R). Neuroimmunol Neuroinflam 3:e267.  https://doi.org/10.1212/nxi.0000000000000267 CrossRefGoogle Scholar
  196. Rezaeepoor M, Shapoori S, Ganjalikhani-Hakemi M, Etemadifar M, Alsahebfosoul F, Eskandari N, Mansourian M (2017) Decreased expression of Sema3A, an immune modulator, in blood sample of multiple sclerosis patients. Gene 610:59–63.  https://doi.org/10.1016/j.gene.2017.02.013 CrossRefPubMedGoogle Scholar
  197. Rezaie Z, Taheri M, Kohan L, Sayad A (2016) Down-regulation of CYP27B1 gene expression in Iranian patients with relapsing-remitting multiple sclerosis. Hum Antibod 24:71–76.  https://doi.org/10.3233/hab-160297 CrossRefGoogle Scholar
  198. Rodriguez-Manzanet R, DeKruyff R, Kuchroo VK, Umetsu DT (2009) The costimulatory role of TIM molecules. Immunol Rev 229:259–270.  https://doi.org/10.1111/j.1600-065X.2009.00772.x CrossRefPubMedPubMedCentralGoogle Scholar
  199. Rohowsky-Kochan C, Eiman D, Cook SD (1993) Individual specific bias usage of HLA-DR antigens in the restriction of myelin basic protein-reactive T cell clones. J Neurol Sci 117:120–129CrossRefPubMedGoogle Scholar
  200. Ronaghi M, Vallian S, Etemadifar M (2009) CD24 gene polymorphism is associated with the disease progression and susceptibility to multiple sclerosis in the Iranian population. Psychiatry Res 170:271–272.  https://doi.org/10.1016/j.psychres.2009.01.002 CrossRefPubMedGoogle Scholar
  201. Roostaei T et al (2016) Channelopathy-related SCN10A gene variants predict cerebellar dysfunction in multiple sclerosis. Neurology 86:410–417.  https://doi.org/10.1212/wnl.0000000000002326 CrossRefPubMedPubMedCentralGoogle Scholar
  202. Rossi S et al (2012) Interleukin-1beta causes synaptic hyperexcitability in multiple sclerosis. Ann Neurol 71:76–83.  https://doi.org/10.1002/ana.22512 CrossRefPubMedGoogle Scholar
  203. Rossi S et al (2014) Cerebrospinal fluid detection of interleukin-1beta in phase of remission predicts disease progression in multiple sclerosis. J Neuroinflam 11:32.  https://doi.org/10.1186/1742-2094-11-32 CrossRefGoogle Scholar
  204. Russo VC, Gluckman PD, Feldman EL, Werther GA (2005) The insulin-like growth factor system and its pleiotropic functions in brain. Endocr Rev 26:916–943.  https://doi.org/10.1210/er.2004-0024 CrossRefPubMedGoogle Scholar
  205. Sabino FC et al (2014) Evolutionary history of the PER3 variable number of tandem repeats (VNTR): idiosyncratic aspect of primate molecular circadian clock. PloS ONE 9:e107198.  https://doi.org/10.1371/journal.pone.0107198 CrossRefPubMedPubMedCentralGoogle Scholar
  206. Sahraian MA, Pakdaman H, Harandi AA (2012) Is it time to revise the classification of geographical distribution of multiple sclerosis? Iran J Neurol 11:77–78PubMedPubMedCentralGoogle Scholar
  207. Saito M, Chakraborty G, Mao RF, Vadasz C, Saito M (2009) Developmental profiles of lipogenic enzymes and their regulators in the neonatal mouse brain. Neurochem Res 34:1945–1954.  https://doi.org/10.1007/s11064-009-9975-y CrossRefPubMedPubMedCentralGoogle Scholar
  208. Sanchooli J, Ramroodi N, Sanadgol N, Sarabandi V, Ravan H, Rad RS (2014) Relationship between metalloproteinase 2 and 9 concentrations and soluble CD154 expression in Iranian patients with multiple sclerosis. Kaohsiung J Med Sci 30:235–242.  https://doi.org/10.1016/j.kjms.2013.12.008 CrossRefPubMedGoogle Scholar
  209. Santoro M, Nociti V, Lucchini M, De Fino C, Losavio FA, Mirabella M (2016) Expression profile of long non-coding RNAs in serum of patients with multiple sclerosis. J Mol Neurosci 59:18–23.  https://doi.org/10.1007/s12031-016-0741-8 CrossRefPubMedGoogle Scholar
  210. Sasaki YT, Ideue T, Sano M, Mituyama T, Hirose T (2009) MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc Natl Acad Sci USA 106:2525–2530.  https://doi.org/10.1073/pnas.0807899106 CrossRefPubMedGoogle Scholar
  211. Sayad A (2014) The association of -330 interleukin-2 gene polymorphism and HLA-DR15 allele in Iranian patients with multiple sclerosis. Int J Immunogenet 41:330–334.  https://doi.org/10.1111/iji.12132 CrossRefPubMedGoogle Scholar
  212. Sayad A, Kelarijani MK, Sajjadi E, Taheri M (2017) IFNAR1 expression level in Iranian multiple sclerosis patients treated with IFN-B. Hum Antibod 26:17–22.  https://doi.org/10.3233/hab-170316 CrossRefGoogle Scholar
  213. Sayad A et al (2018) Down-regulation of RORA gene expression in the blood of multiple sclerosis patients. Hum Antibod 26:219–224.  https://doi.org/10.3233/HAB-180341 CrossRefGoogle Scholar
  214. Schaffler A, Neumeier M, Herfarth H, Furst A, Scholmerich J, Buchler C (2005) Genomic structure of human omentin, a new adipocytokine expressed in omental adipose tissue. Biochim Biophys Acta 1732:96–102.  https://doi.org/10.1016/j.bbaexp.2005.11.005 CrossRefPubMedGoogle Scholar
  215. Schneider-Hohendorf T, Stenner MP, Weidenfeller C, Zozulya AL, Simon OJ, Schwab N, Wiendl H (2010) Regulatory T cells exhibit enhanced migratory characteristics, a feature impaired in patients with multiple sclerosis. Eur J Immunol 40:3581–3590.  https://doi.org/10.1002/eji.201040558 CrossRefPubMedGoogle Scholar
  216. Scott SA et al (2009) Design of isoform-selective phospholipase D inhibitors that modulate cancer cell invasiveness. Nat Chem Biol 5:108–117.  https://doi.org/10.1038/nchembio.140 CrossRefPubMedPubMedCentralGoogle Scholar
  217. Sepehri Z, Kiani Z, Alavian SM, Arababadi MK, Kennedy D (2016) The link between TLR7 signaling and hepatitis B virus infection. Life Sci 158:63–69.  https://doi.org/10.1016/j.lfs.2016.06.026 CrossRefPubMedGoogle Scholar
  218. Shahbazi M et al (2010a) HLA-DRB1*1501 intensifies the impact of IL-6 promoter polymorphism on the susceptibility to multiple sclerosis in an Iranian population. Mult Scler 16:1173–1177.  https://doi.org/10.1177/1352458510376177 CrossRefPubMedGoogle Scholar
  219. Shahbazi M et al (2010b) High frequency of the IL-2 -330 T/HLA-DRB1*1501 haplotype in patients with multiple sclerosis. Clin Immunol 137:134–138.  https://doi.org/10.1016/j.clim.2010.05.010 CrossRefPubMedGoogle Scholar
  220. Shahbazi M, Roshandel D, Omidnyia E, Rshaidbaghan A (2011) Interaction of HLA-DRB1*1501 allele and TNF-alpha -308 G/A single nucleotide polymorphism in the susceptibility to multiple sclerosis. Clin Immunol 139:277–281.  https://doi.org/10.1016/j.clim.2011.02.012 CrossRefPubMedGoogle Scholar
  221. Shahbazi M, Abdolmohammadi R, Ebadi H, Farazmandfar T (2017) Novel functional polymorphism in IGF-1 gene associated with multiple sclerosis: a new insight to MS. Mult Scler Relat Disord 13:33–37.  https://doi.org/10.1016/j.msard.2017.02.002 CrossRefPubMedGoogle Scholar
  222. Shoenfeld Y, Selmi C, Zimlichman E, Gershwin ME (2008) The autoimmunologist: geoepidemiology, a new center of gravity, and prime time for autoimmunity. J Autoimmun 31:325–330.  https://doi.org/10.1016/j.jaut.2008.08.004 CrossRefPubMedGoogle Scholar
  223. Shokrgozar MA et al (2009) IL-2, IFN-gamma, and IL-12 gene polymorphisms and susceptibility to multiple sclerosis. J Clin Immunol 29:747–751.  https://doi.org/10.1007/s10875-009-9310-z CrossRefPubMedGoogle Scholar
  224. Sohn H, Kim B, Kim KH, Kim MK, Choi TK, Lee SH (2014) Effects of VRK2 (rs2312147) on white matter connectivity in patients with schizophrenia. PLoS ONE 9:e103519.  https://doi.org/10.1371/journal.pone.0103519 CrossRefPubMedPubMedCentralGoogle Scholar
  225. Soilu-Hanninen M, Laaksonen M, Laitinen I, Eralinna JP, Lilius EM, Mononen I (2008) A longitudinal study of serum 25-hydroxyvitamin D and intact parathyroid hormone levels indicate the importance of vitamin D and calcium homeostasis regulation in multiple sclerosis. J Neurol Neurosurg Psychiatry 79:152–157.  https://doi.org/10.1136/jnnp.2006.105320 CrossRefPubMedGoogle Scholar
  226. Stavropoulou C et al (2007) Glutathione-S-transferase T1 and M1 gene polymorphisms in Greek patients with multiple sclerosis: a pilot study. Eur J Neurol 14:572–574.  https://doi.org/10.1111/j.1468-1331.2006.01678.x CrossRefPubMedGoogle Scholar
  227. Strange RC, Spiteri MA, Ramachandran S, Fryer AA (2001) Glutathione-S-transferase family of enzymes. Mutat Res 482:21–26CrossRefGoogle Scholar
  228. Surtees R, Leonard J, Austin S (1991) Association of demyelination with deficiency of cerebrospinal-fluid S-adenosylmethionine in inborn errors of methyl-transfer pathway. Lancet 338:1550–1554CrossRefPubMedGoogle Scholar
  229. Swank RL, Lerstad O, Strom A, Backer J (1952) Multiple sclerosis in rural Norway its geographic and occupational incidence in relation to nutrition. N Engl J Med 246:722–728CrossRefPubMedGoogle Scholar
  230. Taheri M, Sayad A (2018) Investigating the exon 6 sequence changes of interleukin 7 receptor A (IL7RA) gene in patients with relapsing-remitting multiple sclerosis. Hum Antibod 26:43–48.  https://doi.org/10.3233/hab-170320 CrossRefGoogle Scholar
  231. Takamatsu H, Okuno T, Kumanogoh A (2010) Regulation of immune cell responses by semaphorins and their receptors. Cell Mol Immunol 7:83–88.  https://doi.org/10.1038/cmi.2009.111 CrossRefPubMedPubMedCentralGoogle Scholar
  232. Takeyama K, Kitanaka S, Sato T, Kobori M, Yanagisawa J, Kato S (1997) 25-Hydroxyvitamin D3 1alpha-hydroxylase and vitamin D synthesis. Science 277:1827–1830CrossRefPubMedGoogle Scholar
  233. Tang SC, Fan XH, Pan QM, Sun QS, Liu Y (2015) Decreased expression of IL-27 and its correlation with Th1 and Th17 cells in progressive multiple sclerosis. J Neurol Sci 348:174–180.  https://doi.org/10.1016/j.jns.2014.11.035 CrossRefPubMedGoogle Scholar
  234. Tao Y, Zhang X, Markovic-Plese S (2016) Toll-like receptor (TLR)7 and TLR9 agonists enhance interferon (IFN) beta-1a’s immunoregulatory effects on B cells in patients with relapsing-remitting multiple sclerosis (RRMS). J Neuroimmunol 298:181–188.  https://doi.org/10.1016/j.jneuroim.2016.07.019 CrossRefPubMedGoogle Scholar
  235. Tawfik TZ et al (2016) Interleukins 17 and 10 in a sample of Egyptian relapsing remitting multiple sclerosis patients. J Neurol Sci 369:36–38.  https://doi.org/10.1016/j.jns.2016.07.034 CrossRefPubMedGoogle Scholar
  236. Tesli M et al (2016) VRK2 gene expression in schizophrenia, bipolar disorder and healthy controls. Br J Psychiatry 209:114–120.  https://doi.org/10.1192/bjp.bp.115.161950 CrossRefPubMedGoogle Scholar
  237. Thacker EL, Mirzaei F, Ascherio A (2006) Infectious mononucleosis and risk for multiple sclerosis: a meta-analysis. Ann Neurol 59:499–503.  https://doi.org/10.1002/ana.20820 CrossRefPubMedGoogle Scholar
  238. Thurston RD et al. (2010) Tumor necrosis factor and interferon-gamma down-regulate Klotho in mice with colitis. Gastroenterology 138:1384-1394, e1381-1382  https://doi.org/10.1053/j.gastro.2009.12.002
  239. Tiszlavicz Z et al (2009) RAGE gene polymorphisms in patients with multiple sclerosis. J Mol Neurosci 39:360–365.  https://doi.org/10.1007/s12031-009-9291-7 CrossRefPubMedGoogle Scholar
  240. Toghi M, Taheri M, Arsang-Jang S, Ohadi M, Mirfakhraie R, Mazdeh M, Sayad A (2017) SOCS gene family expression profile in the blood of multiple sclerosis patients. J Neurol Sci 375:481–485.  https://doi.org/10.1016/j.jns.2017.02.015 CrossRefPubMedGoogle Scholar
  241. Tolouei S, Hejazi SH, Ghaedi K, Khamesipour A, Hasheminia SJ (2013) TLR2 and TLR4 in cutaneous leishmaniasis caused by Leishmania major. Scand J Immunol 78:478–484.  https://doi.org/10.1111/sji.12105 CrossRefPubMedGoogle Scholar
  242. Toro J et al (2016) HLA-DRB1*14 is a protective allele for multiple sclerosis in an admixed Colombian population. Neurol Neuroimmunol Neuroinflam 3:192.  https://doi.org/10.1212/nxi.0000000000000192 CrossRefGoogle Scholar
  243. Uze G, Schreiber G, Piehler J, Pellegrini S (2007) The receptor of the type I interferon family. Curr Top Microbiol Immunol 316:71–95PubMedGoogle Scholar
  244. Vadasz Z, Toubi E (2014) Semaphorins: their dual role in regulating immune-mediated diseases. Clin Rev Allergy Immunol 47:17–25.  https://doi.org/10.1007/s12016-013-8360-4 CrossRefPubMedGoogle Scholar
  245. Vandenbroeck K et al (2012) A cytokine gene screen uncovers SOCS1 as genetic risk factor for multiple sclerosis. Genes Immun 13:21–28.  https://doi.org/10.1038/gene.2011.44 CrossRefPubMedGoogle Scholar
  246. Villarino AV, Huang E, Hunter CA (2004) Understanding the pro- and anti-inflammatory properties of IL-27. J Immunol 173:715–720CrossRefPubMedGoogle Scholar
  247. Wade DT, Young CA, Chaudhuri KR, Davidson DL (2002) A randomised placebo controlled exploratory study of vitamin B-12, lofepramine, and l-phenylalanine (the “Cari Loder regime”) in the treatment of multiple sclerosis. J Neurol Neurosurg Psychiatry 73:246–249CrossRefPubMedPubMedCentralGoogle Scholar
  248. Wallin MT, Page WF, Kurtzke JF (2004) Multiple sclerosis in US veterans of the Vietnam era and later military service: race, sex, and geography. Ann Neurol 55:65–71.  https://doi.org/10.1002/ana.10788 CrossRefPubMedGoogle Scholar
  249. Wang H, Wang K, Wang C, Xu F, Qiu W, Hu X (2013) Increased plasma interleukin-32 expression in patients with neuromyelitis optica. J Clin Immunol 33:666–670.  https://doi.org/10.1007/s10875-012-9837-2 CrossRefPubMedGoogle Scholar
  250. Wang P, Xie K, Wang C, Bi J (2014) Oxidative stress induced by lipid peroxidation is related with inflammation of demyelination and neurodegeneration in multiple sclerosis. Eur Neurol 72:249–254.  https://doi.org/10.1159/000363515 CrossRefPubMedGoogle Scholar
  251. Waubant E (2006) Biomarkers indicative of blood-brain barrier disruption in multiple sclerosis. Dis Markers 22:235–244CrossRefPubMedPubMedCentralGoogle Scholar
  252. Wawrusiewicz-Kurylonek N et al (2018) The FOXP3 rs3761547 gene polymorphism in multiple sclerosis as a male-specific risk factor. Neuromol Med 20:537–543.  https://doi.org/10.1007/s12017-018-8512-z CrossRefGoogle Scholar
  253. Webb LM, Guerau-de-Arellano M (2017) Emerging role for methylation in multiple sclerosis: beyond DNA. Trends Mol Med 23:546–562.  https://doi.org/10.1016/j.molmed.2017.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  254. Weiner HL (2008) A shift from adaptive to innate immunity: a potential mechanism of disease progression in multiple sclerosis. J Neurol 255(Suppl 1):3–11.  https://doi.org/10.1007/s00415-008-1002-8 CrossRefPubMedGoogle Scholar
  255. Witkowski JM, Soroczynska-Cybula M, Bryl E, Smolenska Z, Jozwik A (2007) Klotho–a common link in physiological and rheumatoid arthritis-related aging of human CD4 + lymphocytes. J Immunol 178:771–777CrossRefPubMedGoogle Scholar
  256. Wraith DC (2006) Anti-cytokine vaccines and the immunotherapy of autoimmune diseases. Eur J Immunol 36:2844–2848.  https://doi.org/10.1002/eji.200636760 CrossRefPubMedPubMedCentralGoogle Scholar
  257. Xu G, Cheng L, Lu L, Zhu Y, Xu R, Yao X, Li H (2008) Expression of T-cell immunoglobulin- and mucin-domain-containing molecule-1 (TIM-1) is increased in a mouse model of asthma and relationship to GATA-3. Life Sci 82:663–669.  https://doi.org/10.1016/j.lfs.2007.12.017 CrossRefPubMedGoogle Scholar
  258. Yang RZ et al (2006) Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am J Physiol Endocrinol Metab 290:E1253–E1261.  https://doi.org/10.1152/ajpendo.00572.2004 CrossRefPubMedGoogle Scholar
  259. Yang XO et al (2008) T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 28:29–39.  https://doi.org/10.1016/j.immuni.2007.11.016 CrossRefPubMedGoogle Scholar
  260. Yap KL et al (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38:662–674.  https://doi.org/10.1016/j.molcel.2010.03.021 CrossRefPubMedPubMedCentralGoogle Scholar
  261. Yong VW (2009) Prospects of repair in multiple sclerosis. J Neurol Sci 277(Suppl 1):S16–S18.  https://doi.org/10.1016/S0022-510X(09)70006-1 CrossRefPubMedGoogle Scholar
  262. Yoshimoto T, Yoshimoto T, Yasuda K, Mizuguchi J, Nakanishi K (2007) IL-27 suppresses Th2 cell development and Th2 cytokines production from polarized Th2 cells: a novel therapeutic way for Th2-mediated allergic inflammation. J Immunol 179:4415–4423CrossRefPubMedGoogle Scholar
  263. Yoshimura A, Naka T, Kubo M (2007) SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol 7:454–465.  https://doi.org/10.1038/nri2093 CrossRefPubMedGoogle Scholar
  264. Yousefipour G, Erfani N, Momtahan M, Moghaddasi H, Ghaderi A (2009) CTLA4 exon 1 and promoter polymorphisms in patients with multiple sclerosis. Acta Neurol Scand 120:424–429.  https://doi.org/10.1111/j.1600-0404.2009.01177.x CrossRefPubMedGoogle Scholar
  265. Zhang W et al (2013) CCL20 Secretion from the nucleus pulposus improves the recruitment of CCR1-expressing Th17 cells to degenerated IVD tissues. PloS ONE 8:e66286.  https://doi.org/10.1371/journal.pone.0066286 CrossRefPubMedPubMedCentralGoogle Scholar
  266. Zhang EB et al (2014) P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression. Cell Death Dis 5:e1243.  https://doi.org/10.1038/cddis.2014.201 CrossRefPubMedPubMedCentralGoogle Scholar
  267. Zhou Q et al (2003) CD24 is a genetic modifier for risk and progression of multiple sclerosis. Proc Natl Acad Sci USA 100:15041–15046.  https://doi.org/10.1073/pnas.2533866100 CrossRefPubMedGoogle Scholar
  268. Zhu J, Paul WE (2010) Peripheral CD4+T-cell differentiation regulated by networks of cytokines and transcription factors. Immunol Rev 238:247–262.  https://doi.org/10.1111/j.1600-065x.2010.00951.x CrossRefPubMedPubMedCentralGoogle Scholar
  269. Zivkovic M, Zivotic I, Dincic E, Stojkovic L, Vojinovic S, Stankovic A (2013) The glutathione S-transferase T1 deletion is associated with susceptibility to multiple sclerosis. J Neurol Sci 334:6–9.  https://doi.org/10.1016/j.jns.2013.07.001 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Medical Genetics Research CenterMashhad University of Medical SciencesMashhadIran

Personalised recommendations