Advertisement

Potential Use of Exfoliated and Cultured Olfactory Neuronal Precursors for In Vivo Alzheimer’s Disease Diagnosis: A Pilot Study

  • Agustín Riquelme
  • Marcela Valdés-Tovar
  • Oscar Ugalde
  • Vanessa Maya-Ampudia
  • Monserrat Fernández
  • Leticia Mendoza-Durán
  • Leslye Rodríguez-Cárdenas
  • Gloria Benítez-KingEmail author
Original Research

Abstract

Histopathological hallmarks of dementia have been described postmortem in the brain of patients with Alzheimer’s disease (AD). Tau, a microtubule associated protein, is abnormally arranged in neurofibrillary tangles. In living AD patients, total tau (t-tau) and hyperphosphorylated tau (p-tau) levels are increased in the cerebrospinal fluid obtained by lumbar puncture. Herein, we studied the t-tau and p-tau levels as well as the subcellular distribution of t-tau in olfactory neuronal precursors obtained by exfoliation of the nasal cavity of AD patients and control participants. Data showed that t-tau and p-tau levels were increased in cell homogenates from AD patients. Also, t-tau immunoreactivity was arranged in a punctate pattern in olfactory neuronal precursors derived from an AD participant with 5 years of evolution and in the oldest participants, either control subjects or those with Alzheimer’s disease. Results support that exfoliated neuronal precursors have tau alterations demonstrated in postmortem brain and in the cerebrospinal fluid. This evidence and because the obtainment of olfactory neuronal precursors is a noninvasive procedure, detection of tau alterations shown here might be useful for an early diagnosis of AD-type dementia.

Keywords

Olfactory neuronal precursors Alzheimer’s disease Tau Phospho-tau 

Notes

Funding

This study was supported by the Consejo Nacional de Ciencia y Tecnología (CONACyT), México, Grant Number 178075 to Gloria Benítez-King.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they do not have conflicts of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee (Comité de Ética en Investigación del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, IC122037.0) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Arnold SE, Smutzer GS, Trojanowski JQ, Moberg PJ (1998) Cellular and molecular neuropathology of the olfactory epithelium and central olfactory pathways in Alzheimer’s disease and schizophrenia. Ann N Y Acad Sci 855:762–775CrossRefGoogle Scholar
  2. Arnold SE, Lee EB, Moberg PJ et al (2010) Olfactory epithelium amyloid-β and paired helical filament-tau pathology in Alzheimer disease. Ann Neurol 67:462–469.  https://doi.org/10.1002/ana.21910 CrossRefGoogle Scholar
  3. Attems J, Jellinger KA (2006) Olfactory tau pathology in Alzheimer disease and mild cognitive impairment. Clin Neuropathol 25:265–271Google Scholar
  4. Attems J, Walker L, Jellinger KA (2014) Olfactory bulb involvement in neurodegenerative diseases. Acta Neuropathol 127:459–475.  https://doi.org/10.1007/s00401-014-1261-7 CrossRefGoogle Scholar
  5. Augustinack JC, Schneider A, Mandelkow E-M, Hyman BT (2002) Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol 103:26–35CrossRefGoogle Scholar
  6. Benítez-King G, Riquelme A, Ortíz-López L et al (2011) A non-invasive method to isolate the neuronal linage from the nasal epithelium from schizophrenic and bipolar diseases. J Neurosci Methods 201:35–45.  https://doi.org/10.1016/j.jneumeth.2011.07.009 CrossRefGoogle Scholar
  7. Benítez-King G, Valdés-Tovar M, Trueta C et al (2016) The microtubular cytoskeleton of olfactory neurons derived from patients with schizophrenia or with bipolar disorder: implications for biomarker characterization, neuronal physiology and pharmacological screening. Mol Cell Neurosci 73:84–95.  https://doi.org/10.1016/j.mcn.2016.01.013 CrossRefGoogle Scholar
  8. Blennow K, Hampel H (2003) CSF markers for incipient Alzheimer’s disease. Lancet Neurol 2:605–613CrossRefGoogle Scholar
  9. Borgmann-Winter KE, Rawson NE, Wang H-Y et al (2009) Human olfactory epithelial cells generated in vitro express diverse neuronal characteristics. Neuroscience 158:642–653.  https://doi.org/10.1016/j.neuroscience.2008.09.059 CrossRefGoogle Scholar
  10. Braak H, Alafuzoff I, Arzberger T et al (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404.  https://doi.org/10.1007/s00401-006-0127-z CrossRefGoogle Scholar
  11. Brion JP, Anderton BH, Authelet M et al (2001) Neurofibrillary tangles and tau phosphorylation. Biochem Soc Symp 67:81–88CrossRefGoogle Scholar
  12. Buée L, Bussière T, Buée-Scherrer V et al (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33:95–130CrossRefGoogle Scholar
  13. Butler M, Shelanski ML (1986) Microheterogeneity of microtubule-associated tau proteins is due to differences in phosphorylation. J Neurochem 47:1517–1522CrossRefGoogle Scholar
  14. Cascella NG, Takaki M, Lin S, Sawa A (2007) Neurodevelopmental involvement in schizophrenia: the olfactory epithelium as an alternative model for research. J Neurochem 102:587–594.  https://doi.org/10.1111/j.1471-4159.2007.4628.x CrossRefGoogle Scholar
  15. Christen-Zaech S, Kraftsik R, Pillevuit O et al (2003) Early olfactory involvement in Alzheimer’s disease. Can J Neurol Sci 30:20–25CrossRefGoogle Scholar
  16. Davis KL, Davidson M, Yang RK et al (1988) CSF somatostatin in Alzheimer’s disease, depressed patients, and control subjects. Biol Psychiatry 24:710–712CrossRefGoogle Scholar
  17. Delacourte A (1999) Biochemical and molecular characterization of neurofibrillary degeneration in frontotemporal dementias. Dement Geriatr Cogn Disord 10:75–79.  https://doi.org/10.1159/000051218 CrossRefGoogle Scholar
  18. Duan AR, Jonasson EM, Alberico EO et al (2017) Interactions between tau and different conformations of tubulin: implications for tau function and mechanism. J Mol Biol 429:1424–1438.  https://doi.org/10.1016/j.jmb.2017.03.018 CrossRefGoogle Scholar
  19. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198CrossRefGoogle Scholar
  20. Fortea J, Carmona-Iragui M, Benejam B et al (2018) Plasma and CSF biomarkers for the diagnosis of Alzheimer’s disease in adults with Down syndrome: a cross-sectional study. Lancet Neurol 17:860–869.  https://doi.org/10.1016/S1474-4422(18)30285-0 CrossRefGoogle Scholar
  21. Goedert M, Spillantini MG, Cairns NJ, Crowther RA (1992) Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron 8:159–168CrossRefGoogle Scholar
  22. Greenberg SG, Davies P (1990) A preparation of Alzheimer paired helical filaments that displays distinct tau proteins by polyacrylamide gel electrophoresis. Proc Natl Acad Sci USA 87:5827–5831CrossRefGoogle Scholar
  23. Guillozet AL, Weintraub S, Mash DC, Mesulam MM (2003) Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch Neurol 60:729.  https://doi.org/10.1001/archneur.60.5.729 CrossRefGoogle Scholar
  24. Herculano-Houzel S (2014) The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia 62:1377–1391.  https://doi.org/10.1002/glia.22683 CrossRefGoogle Scholar
  25. Hock C, Golombowski S, Müller-Spahn F et al (1998) Histological markers in nasal mucosa of patients with Alzheimer’s disease. Eur Neurol 40:31–36.  https://doi.org/10.1159/000007953 CrossRefGoogle Scholar
  26. Hu WT, Watts K, Grossman M et al (2013) Reduced CSF p-Tau181 to Tau ratio is a biomarker for FTLD-TDP. Neurology 81:1945–1952.  https://doi.org/10.1212/01.wnl.0000436625.63650.27 CrossRefGoogle Scholar
  27. Iqbal K, Grundke-Iqbal I, Zaidi T et al (1986) Defective brain microtubule assembly in Alzheimer’s disease. Lancet (London, England) 2:421–426CrossRefGoogle Scholar
  28. Iqbal K, Alonso AD, Chen S et al (2005) Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta 1739:198–210.  https://doi.org/10.1016/j.bbadis.2004.09.008 CrossRefGoogle Scholar
  29. Ishiguro K, Omori A, Sato K et al (1991) A serine/threonine proline kinase activity is included in the tau protein kinase fraction forming a paired helical filament epitope. Neurosci Lett 128:195–198CrossRefGoogle Scholar
  30. Khatoon S, Grundke-Iqbal I, Iqbal K (1992) Brain levels of microtubule-associated protein tau are elevated in Alzheimer’s disease: a radioimmuno-slot-blot assay for nanograms of the protein. J Neurochem 59:750–753CrossRefGoogle Scholar
  31. Kishikawa M, Iseki M, Sakae M et al (1994) Early diagnosis of Alzheimer’s? Nature 369:365–366.  https://doi.org/10.1038/369365a0 CrossRefGoogle Scholar
  32. Kovacs T (2004) Mechanisms of olfactory dysfunction in aging and neurodegenerative disorders. Ageing Res Rev 3:215–232.  https://doi.org/10.1016/j.arr.2003.10.003 CrossRefGoogle Scholar
  33. Kovács T, Cairns NJ, Lantos PL (1999) beta-amyloid deposition and neurofibrillary tangle formation in the olfactory bulb in ageing and Alzheimer’s disease. Neuropathol Appl Neurobiol 25:481–491CrossRefGoogle Scholar
  34. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  35. Lavoie J, Sawa A, Ishizuka K (2017) Application of olfactory tissue and its neural progenitors to schizophrenia and psychiatric research. Curr Opin Psychiatry 30:176–183.  https://doi.org/10.1097/YCO.0000000000000327 CrossRefGoogle Scholar
  36. Lee JH, Goedert M, Hill WD et al (1993) Tau proteins are abnormally expressed in olfactory epithelium of Alzheimer patients and developmentally regulated in human fetal spinal cord. Exp Neurol 121:93–105.  https://doi.org/10.1006/exnr.1993.1074 CrossRefGoogle Scholar
  37. Leszek J, Małyszczak K, Janicka B et al (2003) Total tau in cerebrospinal fluid differentiates Alzheimer’s disease from vascular dementia. Med Sci Monit 9:CR484–CR488Google Scholar
  38. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  39. Matigian N, Abrahamsen G, Sutharsan R et al (2010) Disease-specific, neurosphere-derived cells as models for brain disorders. Dis Model Mech 3:785–798.  https://doi.org/10.1242/dmm.005447 CrossRefGoogle Scholar
  40. Muñoz-Estrada J, Benítez-King G, Berlanga C, Meza I (2015) Altered subcellular distribution of the 75-kDa DISC1 isoform, cAMP accumulation, and decreased neuronal migration in schizophrenia and bipolar disorder: implications for neurodevelopment. CNS Neurosci Ther 21:446–453.  https://doi.org/10.1111/cns.12377 CrossRefGoogle Scholar
  41. Muñoz-Estrada J, Lora-Castellanos A, Meza I et al (2018) Primary cilia formation is diminished in schizophrenia and bipolar disorder: a possible marker for these psychiatric diseases. Schizophr Res 195:412–420.  https://doi.org/10.1016/j.schres.2017.08.055 CrossRefGoogle Scholar
  42. Murphy C, Solomon ES, Haase L et al (2009) Olfaction in aging and Alzheimer’s disease: event-related potentials to a cross-modal odor-recognition memory task discriminate ApoE epsilon4 + and ApoE epsilon 4- individuals. Ann N Y Acad Sci 1170:647–657.  https://doi.org/10.1111/j.1749-6632.2009.04486.x CrossRefGoogle Scholar
  43. O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021Google Scholar
  44. Papasozomenos SC (1989) Tau protein immunoreactivity in dementia of the Alzheimer type. I. Morphology, evolution, distribution, and pathogenetic implications. Lab Invest 60:123–137Google Scholar
  45. Polanco JC, Li C, Bodea L-G et al (2018) Amyloid-β and tau complexity—towards improved biomarkers and targeted therapies. Nat Rev Neurol 14:22–39.  https://doi.org/10.1038/nrneurol.2017.162 CrossRefGoogle Scholar
  46. Prince MJ, Wu F, Guo Y et al (2015) The burden of disease in older people and implications for health policy and practice. Lancet 385:549–62.  https://doi.org/10.1016/S0140-6736(14)61347-7 CrossRefGoogle Scholar
  47. Qian J, Hyman BT, Betensky RA (2017) Neurofibrillary tangle stage and the rate of progression of Alzheimer symptoms: modeling using an autopsy cohort and application to clinical trial design. JAMA Neurol 74:540–548.  https://doi.org/10.1001/jamaneurol.2016.5953 CrossRefGoogle Scholar
  48. Reyes PF, Deems DA, Suarez MG (1993) Olfactory-related changes in Alzheimer’s disease: a quantitative neuropathologic study. Brain Res Bull 32:1–5CrossRefGoogle Scholar
  49. Sawa A, Cascella NG (2009) Peripheral olfactory system for clinical and basic psychiatry: a promising entry point to the mystery of brain mechanism and biomarker identification in schizophrenia. Am J Psychiatry 166:137–139.  https://doi.org/10.1176/appi.ajp.2008.08111702 CrossRefGoogle Scholar
  50. Sergeant N, Delacourte A, Buée L (2005) Tau protein as a differential biomarker of tauopathies. Biochim Biophys Acta 1739:179–197.  https://doi.org/10.1016/j.bbadis.2004.06.020 CrossRefGoogle Scholar
  51. Shah H, Albanese E, Duggan C et al (2016) Research priorities to reduce the global burden of dementia by 2025. Lancet Neurol 15:1285–1294.  https://doi.org/10.1016/S1474-4422(16)30235-6 CrossRefGoogle Scholar
  52. Skoog I, Vanmechelen E, Andreasson LA et al (1995) A population-based study of tau protein and ubiquitin in cerebrospinal fluid in 85-year-olds: relation to severity of dementia and cerebral atrophy, but not to the apolipoprotein E4 allele. Neurodegeneration 4:433–442CrossRefGoogle Scholar
  53. Talamo BR, Rudel R, Kosik KS et al (1989) Pathological changes in olfactory neurons in patients with Alzheimer’s disease. Nature 337:736–739.  https://doi.org/10.1038/337736a0 CrossRefGoogle Scholar
  54. Tarawneh R, Holtzman DM (2012) The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harb Perspect Med 2:a006148–a006148.  https://doi.org/10.1101/cshperspect.a006148 CrossRefGoogle Scholar
  55. Tatsumi S, Uchihara T, Aiba I et al (2014) Ultrastructural differences in pretangles between Alzheimer disease and corticobasal degeneration revealed by comparative light and electron microscopy. Acta Neuropathol Commun 2:161.  https://doi.org/10.1186/s40478-014-0161-3 CrossRefGoogle Scholar
  56. Towbin H, Staehelin T, Gordon J (1992) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. 1979. Biotechnology 24:145–149Google Scholar
  57. Vandermeeren M, Mercken M, Vanmechelen E et al (1993) Detection of tau proteins in normal and Alzheimer’s disease cerebrospinal fluid with a sensitive sandwich enzyme-linked immunosorbent assay. J Neurochem 61:1828–1834CrossRefGoogle Scholar
  58. Wilson RS, Schneider JA, Arnold SE et al (2007) Olfactory identification and incidence of mild cognitive impairment in older age. Arch Gen Psychiatry 64:802.  https://doi.org/10.1001/archpsyc.64.7.802 CrossRefGoogle Scholar
  59. Zhang X, Klueber KM, Guo Z et al (2004) Adult human olfactory neural progenitors cultured in defined medium. Exp Neurol 186:112–123.  https://doi.org/10.1016/j.expneurol.2003.10.022 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Agustín Riquelme
    • 1
    • 3
  • Marcela Valdés-Tovar
    • 1
  • Oscar Ugalde
    • 2
  • Vanessa Maya-Ampudia
    • 1
  • Monserrat Fernández
    • 2
  • Leticia Mendoza-Durán
    • 1
  • Leslye Rodríguez-Cárdenas
    • 1
  • Gloria Benítez-King
    • 1
    Email author
  1. 1.Laboratorio de Neurofarmacología, Subdirección de Investigaciones ClínicasInstituto Nacional de Psiquiatría Ramón de la Fuente MuñizTlalpanMexico
  2. 2.Clínica de Psicogeriatría, Dirección de Servicios ClínicosInstituto Nacional de Psiquiatría Ramón de la Fuente MuñizTlalpanMexico
  3. 3.Cellular Neuroanatomy Laboratory, Program in Neurobiology, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations