Advertisement

Cellular and Molecular Neurobiology

, Volume 39, Issue 2, pp 161–168 | Cite as

α-Synuclein and Glia in Parkinson’s Disease: A Beneficial or a Detrimental Duet for the Endo-Lysosomal System?

  • Alice Filippini
  • Massimo Gennarelli
  • Isabella RussoEmail author
Review Paper

Abstract

Accumulation of α-synuclein (α-syn) species in dopaminergic neurons is one of the main hallmarks of Parkinson’s disease (PD). Several factors have been associated with α-syn aggregation process, including an impairment of the proper protein degradation, which might drive the neurons toward an alternative and/or additional clearance mechanism that involves the release of undigested material from the cell. It has been reported that extracellular α-syn, released by stressed and/or degenerating neurons, might widely contribute to the neuronal toxicity and degeneration. Therefore, the uptake and clearance of misfolded/aggregated proteins is a key process to control extracellular deposition of α-syn aggregates, the spreading and progression of the disease. All the main brain cell types, neurons, astrocytes and microglia are able to internalize and degrade extracellular α-syn, however, glial cells appear to be the most efficient scavengers. Accumulating evidence indicates that the endocytosis of α-syn species might be conformation-sensitive, cell- and receptor-type specific, making the scenario highly complex. In this review, we will shed light on the different endocytosis mechanisms and receptors recruited for the uptake and clearance of pathological α-syn forms with a special focus on glial cells. Moreover, we will discuss how PD-related genes, in addition to α-syn itself, may alter the endo-lysosomal pathway causing an impairment of clearance, which, in turn, lead to accumulation of toxic species, dysfunctions of glia physiology and progression of the disease.

Keywords

α-Synuclein Parkinson’s disease Astrocytes Microglia Endocytosis LRRK2 

Abbreviations

α-syn

α-Synuclein

PD

Parkinson’s disease

LB

Lewy bodies

LN

Lewy neurites

CNS

Central nervous system

Snpc

Substantia nigra pars compacta

AP2

Adaptor protein 2

TLR

Toll-like receptors

LAG3

Lymphocyte-activation gene 3

GCase

Glucocerebrosidase GCase

pffs

pre-formed fibrils

Notes

Acknowledgements

We are grateful to the financial support of CARIPLO Foundation (Grant No. 2016-0428).

Author Contributions

AF and IR conceived the paper; AF, MG and IR wrote the paper.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest for this manuscript.

References

  1. Alegre-Abarrategui J, Christian H, Michele MP, Lufino MM, Mutihac R, Venda LL, Ansorge O, Wade-Martins RR (2009) LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. Hum Mol Genet 18(21):4022–4034.  https://doi.org/10.1093/hmg/ddp346 Google Scholar
  2. Appel SH, Beers DR, Henkel JS (2010) T cell-microglial dialogue in Parkinson’s disease and amyotrophic lateral sclerosis: are we listening? Trends Immunol 31(1):7–17.  https://doi.org/10.1016/j.it.2009.09.003 Google Scholar
  3. Aulić S, Masperone L, Narkiewicz J, Isopi E, Bistaffa E, Ambrosetti E, Pastore B et al (2017) α-Synuclein amyloids hijack prion protein to gain cell entry, facilitate cell-to-cell spreading and block prion replication. Sci Rep 7(1):10050.  https://doi.org/10.1038/s41598-017-10236-x Google Scholar
  4. Bae E-J, Kim D-K, Kim C, Mante M, Adame A, Rockenstein E, Ulusoy A et al (2018) LRRK2 kinase regulates α-Synuclein propagation via RAB35 phosphorylation. Nat Commun 9(1):3465.  https://doi.org/10.1038/s41467-018-05958-z Google Scholar
  5. Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81(2):871–927.  https://doi.org/10.1152/physrev.2001.81.2.871 Google Scholar
  6. Beilina A, Rudenko IN, Kaganovich A, Civiero L, Chau H, Suneil K, Kalia LV, Kalia et al (2014) Unbiased screen for interactors of leucine-rich repeat kinase 2 supports a common pathway for sporadic and familial Parkinson disease. Proc Natl Acad Sci USA 111(7):2626–2631.  https://doi.org/10.1073/pnas.1318306111 Google Scholar
  7. Bieri G, Gitler AD, Brahic M (2018) Internalization, axonal transport and release of fibrillar forms of alpha-synuclein. Neurobiol Dis 109:219–225.  https://doi.org/10.1016/j.nbd.2017.03.007 Google Scholar
  8. Booth HDE, Hirst WD, Wade-Martins R (2017) The role of astrocyte dysfunction in Parkinson’s disease pathogenesis. Trends Neurosci 40(6):358–370.  https://doi.org/10.1016/j.tins.2017.04.001 Google Scholar
  9. Buell AK, Galvagnion C, Gaspar R, Sparr E, Vendruscolo M, Knowles TP, Linse S, Dobson CM (2014) Solution conditions determine the relative importance of nucleation and growth processes in α-Synuclein aggregation. Proc Natl Acad Sci USA 111(21):7671–7676.  https://doi.org/10.1073/pnas.1315346111 Google Scholar
  10. Cao S, Standaert DG, Ashley SH (2012) The gamma chain subunit of Fc receptors is required for alpha-Synuclein-induced pro-inflammatory signaling in microglia. J Neuroinflamm 9(1):259.  https://doi.org/10.1186/1742-2094-9-259 Google Scholar
  11. Choi YR, Kang S-J, Kim J-M, Lee S-J, Jou I, Joe E-H, Park SM (2015) FcγRIIB mediates the inhibitory effect of aggregated α-Synuclein on microglial phagocytosis. Neurobiol Dis 83:90–99.  https://doi.org/10.1016/j.nbd.2015.08.025 Google Scholar
  12. Conway KA, Harper JD, Lansbury PT (1998) Accelerated in vitro fibril formation by a mutant α-Synuclein linked to early-onset Parkinson disease. Nat Med 4(11):1318–1320.  https://doi.org/10.1038/3311 Google Scholar
  13. Cullen V, Sardi SP, Ng J, Xu Y-H, Sun Y, Tomlinson JJ, Kolodziej P et al (2011) Acid β-glucosidase mutants linked to gaucher disease, Parkinson disease, and lewy body dementia alter α-Synuclein processing. Ann Neurol 69(6):940–953.  https://doi.org/10.1002/ana.22400 Google Scholar
  14. Członkowska A, Kohutnicka M, Kurkowska-Jastrzebska I, Członkowski A (1996) Microglial reaction in MPTP (1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine) Induced Parkinson’s disease mice model. Neurodegeneration 5(2):137–143Google Scholar
  15. Dehay B, Martinez-Vicente M, Ramirez A, Perier C, Klein C, Vila M, Bezard E (2012a) Lysosomal dysfunction in Parkinson disease: ATP13A2 gets into the groove. Autophagy 8(9):1389–1391.  https://doi.org/10.4161/auto.21011 Google Scholar
  16. Dehay B, Ramirez A, Martinez-Vicente M, Perier C, Canron M-H, Doudnikoff E, Vital A, Vila M, Klein C, Bezard E (2012b) Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration. Proc Natl Acad Sci USA 109(24):9611–9616.  https://doi.org/10.1073/pnas.1112368109 Google Scholar
  17. Devine MJ, Gwinn K, Singleton A, Hardy J (2011) Parkinson’s disease and α-Synuclein expression. Mov Disord 26(12):2160–2168.  https://doi.org/10.1002/mds.23948 Google Scholar
  18. Eguchi T, Kuwahara T, Sakurai M, Komori T, Fujimoto T, Ito G, Yoshimura S-I et al (2018) LRRK2 and its substrate rab GTPases are sequentially targeted onto stressed lysosomes and maintain their homeostasis. Proc Natl Acad Sci USA 115(39):E9115–E9124.  https://doi.org/10.1073/pnas.1812196115 Google Scholar
  19. Fellner L, Irschick R, Schanda K, Reindl M, Klimaschewski L, Poewe W, Wenning GK, Stefanova N (2013) Toll-like receptor 4 is required for α-Synuclein dependent activation of microglia and astroglia. Glia 61(3):349–360.  https://doi.org/10.1002/glia.22437 Google Scholar
  20. Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T (2002) Alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4(2):160–164.  https://doi.org/10.1038/ncb748 Google Scholar
  21. Garden GA, Möller T (2006) Microglia biology in health and disease. J Neuroimmune Pharmacol 1(2):127–137.  https://doi.org/10.1007/s11481-006-9015-5 Google Scholar
  22. Ghosh D, Mondal M, Mohite GM, Singh PK, Ranjan P, Anoop A, Ghosh S, Jha NN, Kumar A, Samir KM (2013) The Parkinson’s disease-associated H50Q mutation accelerates α-Synuclein aggregation in vitro. Biochemistry 52(40):6925–6927.  https://doi.org/10.1021/bi400999d Google Scholar
  23. Giasson BI, Murray IV, Trojanowski JQ, Lee VM (2001) A hydrophobic stretch of 12 amino acid residues in the middle of Alpha-Synuclein is essential for filament assembly. J Biol Chem 276(4):2380–2386.  https://doi.org/10.1074/jbc.M008919200 Google Scholar
  24. Goedert M, Jakes R, Maria GS (2017) The synucleinopathies: twenty years on. J Parkinson’s Dis 7(s1):S53–S71.  https://doi.org/10.3233/JPD-179005 Google Scholar
  25. Gordon S (2016) Phagocytosis: an immunobiologic process. Immunity 44(3):463–475.  https://doi.org/10.1016/j.immuni.2016.02.026 Google Scholar
  26. Grant BD, Julie GD (2009) Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol 10(9):597–608.  https://doi.org/10.1038/nrm2755 Google Scholar
  27. Greenbaum EA, Charles L, Mishizen-Eberz AJ, Lupoli MA, Lynch DR, Englander SW, Axelsen PH, Benoit IG (2005) The E46K mutation in Alpha-Synuclein increases amyloid fibril formation. J Biol Chem 280(9):7800–7807.  https://doi.org/10.1074/jbc.M411638200 Google Scholar
  28. Harms AS, Cao S, Rowse AL, Thome AD, Li X, Mangieri LR, Cron RQ, Shacka JJ, Raman C, Standaert DG (2013) MHCII is required for -Synuclein-induced activation of microglia, CD4 T cell proliferation, and dopaminergic neurodegeneration. J Neurosci 33(23):9592–9600.  https://doi.org/10.1523/JNEUROSCI.5610-12.2013 Google Scholar
  29. Heo HY, Kim KS, Seol W (2010) Coordinate regulation of neurite outgrowth by LRRK2 and its interactor, Rab5. Exp Neurobiol 19(2):97–105.  https://doi.org/10.5607/en.2010.19.2.97 Google Scholar
  30. Ihse E, Yamakado H, van Wijk XM, Lawrence R, Esko JD, Masliah E (2017) Cellular internalization of Alpha-Synuclein aggregates by cell surface heparan sulfate depends on aggregate conformation and cell type. Sci Rep 7(1):9008.  https://doi.org/10.1038/s41598-017-08720-5 Google Scholar
  31. Iwai A, Masliah E, Yoshimoto M, Ge N, Flanagan L, de Silva HA, Kittel A, Saitoh T (1995) The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 14(2):467–475Google Scholar
  32. Jakes R, Spillantini MG, Goedert M (1994) Identification of two distinct synucleins from human brain. FEBS Lett 345(1):27–32Google Scholar
  33. Joe E-H, Choi D-J, An J, Eun J-H, Jou I, Park S (2018) Astrocytes, microglia, and Parkinson’s disease. Exp Neurobiol 27(2):77–87.  https://doi.org/10.5607/en.2018.27.2.77 Google Scholar
  34. Joers V, Tansey MG, Mulas G, Anna RC (2017) Microglial phenotypes in Parkinson’s disease and animal models of the disease. Prog Neurobiol 155(August):57–75.  https://doi.org/10.1016/j.pneurobio.2016.04.006 Google Scholar
  35. Jung Y-J, Chung WS (2018) Phagocytic roles of glial cells in healthy and diseased brains. Biomol Therapeutics.  https://doi.org/10.4062/biomolther.2017.133 Google Scholar
  36. Kim K, Lee S-G, Kegelman TP, Su Z-Z, Swadesh K, Das R, Dash S, Dasgupta et al (2011) Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J Cell Physiol 226(10):2484–2493.  https://doi.org/10.1002/jcp.22609 Google Scholar
  37. Kim C, Ho D-H, Suk J-E, You S, Michael S, Kang J, Lee SJ et al (2013) Neuron-released oligomeric α-Synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun 4:1562.  https://doi.org/10.1038/ncomms2534 Google Scholar
  38. Lee H-J, Suk J-E, Bae E-J, Lee SJ (2008a) Clearance and deposition of extracellular α-Synuclein aggregates in microglia. Biochem Biophys Res Commun 372(3):423–428.  https://doi.org/10.1016/j.bbrc.2008.05.045 Google Scholar
  39. Lee H-J, Suk J-E, Bae E-J, Lee J-H, Paik SR, Lee SJ (2008b) Assembly-dependent endocytosis and clearance of extracellular α-synuclein Int J Biochem Cell Biol 40(9):1835–1849Google Scholar
  40. Lee H-J, Suk J-E, Patrick C, Bae E-J, Cho J-H, Rho S, Hwang D, Masliah E, Lee SJ (2010) Direct transfer of α-Synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 285(12):9262–9272.  https://doi.org/10.1074/jbc.M109.081125 Google Scholar
  41. Lees AJ, Hardy J, Revesz T (2009) Parkinson’s disease. Lancet 373(9680):2055–2066.  https://doi.org/10.1016/S0140-6736(09)60492-X Google Scholar
  42. Lim J, Phey, Paul AG (2011) Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol 89(8):836–843.  https://doi.org/10.1038/icb.2011.20 Google Scholar
  43. Lindström V, Gustafsson G, Sanders LH, Howlett EH, Sigvardson J, Kasrayan A, Ingelsson M, Bergström J, Erlandsson A (2017) Extensive uptake of α-Synuclein oligomers in astrocytes results in sustained intracellular deposits and mitochondrial damage. Mol Cell Neurosci 82:143–156.  https://doi.org/10.1016/j.mcn.2017.04.009 Google Scholar
  44. Lopes da Fonseca T, Villar-Piqué TA, Outeiro T (2015) The interplay between alpha-synuclein clearance and spreading. Biomolecules 5 (2): 435–471.  https://doi.org/10.3390/biom5020435 Google Scholar
  45. Loria F, Jessica Y, Vargas L, Bousset S, Syan A, Salles R, Melki, Zurzolo C (2017) α-Synuclein transfer between neurons and astrocytes indicates that astrocytes play a role in degradation rather than in spreading. Acta Neuropathol 134(5):789–808.  https://doi.org/10.1007/s00401-017-1746-2 Google Scholar
  46. Ltic S, Perovic M, Mladenovic A, Raicevic N, Ruzdijic S, Rakic L (2004) Alpha-Synuclein is expressed in different tissues during human fetal development. J Mol Neurosci 22(3):199–204Google Scholar
  47. Maekawa T, Sasaoka T, Azuma S, Ichikawa T, Melrose HL, Farrer MJ, Obata F (2016) Leucine-rich repeat kinase 2 (LRRK2) regulates α-Synuclein clearance in microglia. BMC Neurosci 17(1):77.  https://doi.org/10.1186/s12868-016-0315-2 Google Scholar
  48. Manning-Boğ AB, Schüle B, Langston JW (2009) Alpha-Synuclein-glucocerebrosidase interactions in pharmacological gaucher models: a biological link between gaucher disease and Parkinsonism. Neurotoxicology 30(6):1127–1132.  https://doi.org/10.1016/j.neuro.2009.06.009 Google Scholar
  49. Mao X, Ou MT, Karuppagounder SS Xiong Y, Ge P et al (2016) Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science 353(6307):aah3374–aah3374.  https://doi.org/10.1126/science.aah3374 Google Scholar
  50. Masaracchia C, Hnida M, Gerhardt E, Branco T, Stahlberg MA et al (2018) Membrane binding, internalization, and sorting of Alpha-Synuclein in the cell. Acta Neuropathol Commun 6(1):79.  https://doi.org/10.1186/s40478-018-0578-1
  51. Mazzulli JR, Xu Y-H, Sun Y, Knight AL, McLean PJ, Caldwell GA, Sidransky E, Grabowski GA, Krainc D (2011) Gaucher disease glucocerebrosidase and α-Synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146(1):37–52.  https://doi.org/10.1016/j.cell.2011.06.001 Google Scholar
  52. McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38(8):1285–1291Google Scholar
  53. McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12(8):517–533.  https://doi.org/10.1038/nrm3151 Google Scholar
  54. Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T (1994) Tumor necrosis factor-alpha (TNF-Alpha) increases both in the brain and in the cerebrospinal fluid from Parkinsonian patients. Neurosci Lett 165(1–2):208–210Google Scholar
  55. Mori F, Tanji K, Yoshimoto M, Takahashi H, Wakabayashi K (2002) Immunohistochemical comparison of alpha- and beta-Synuclein in adult rat central nervous system. Brain Res 941(1–2):118–126Google Scholar
  56. Mosley R, Lee EJ, Benner I, Kadiu M, Thomas MD, Boska K, Hasan C, Laurie, Howard EG (2006) Neuroinflammation, oxidative stress and the pathogenesis of Parkinson’s disease. Clin Neurosci Res 6(5):261–281.  https://doi.org/10.1016/j.cnr.2006.09.006 Google Scholar
  57. Murphy-Royal C, Dupuis J, Groc L, Oliet SH (2017) Astroglial glutamate transporters in the brain: regulating neurotransmitter homeostasis and synaptic transmission. J Neurosci Res 95(11):2140–2151.  https://doi.org/10.1002/jnr.24029 Google Scholar
  58. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318.  https://doi.org/10.1126/science.1110647 Google Scholar
  59. Park J-Y, Paik SR, Jou I, Sang Myun Park (2008) Microglial phagocytosis is enhanced by monomeric Alpha-Synuclein, not aggregated Alpha-Synuclein: implications for Parkinson’s disease. Glia 56(11):1215–1223.  https://doi.org/10.1002/glia.20691 Google Scholar
  60. Park J-Y, Kim KS, Lee S-B, Ryu J-S, Chung KC, Choo Y-K, Jou I, Kim J, Sang MP (2009) On the mechanism of internalization of Alpha-Synuclein into microglia: roles of ganglioside GM1 and lipid raft. J Neurochem 110(1):400–411.  https://doi.org/10.1111/j.1471-4159.2009.06150.x Google Scholar
  61. Parton RG, Miguel A, del Pozo (2013) Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol 14(2):98–112.  https://doi.org/10.1038/nrm3512 Google Scholar
  62. Podhajska A, Musso A, Trancikova A, Stafa K, Moser R, Sonnay S, Glauser L, Darren JM (2012) Common pathogenic effects of missense mutations in the P-Type ATPase ATP13A2 (PARK9) associated with early-onset Parkinsonism. PLoS ONE 7(6): e39942.  https://doi.org/10.1371/journal.pone.0039942 Google Scholar
  63. Qiao C, Yin N, Gu H-Y, Zhu J-L, Ding J-H, Lu M, Hu G (2016) Atp13a2 deficiency aggravates astrocyte-mediated neuroinflammation via NLRP3 inflammasome activation. CNS Neurosci Ther 22(6):451–460.  https://doi.org/10.1111/cns.12514 Google Scholar
  64. Rannikko EH, Stephanie S, Weber, Philipp JK (2015) Exogenous α-Synuclein induces toll-like receptor 4 dependent inflammatory responses in astrocytes. BMC Neurosci 16(1):57.  https://doi.org/10.1186/s12868-015-0192-0 Google Scholar
  65. Recchia A, Debetto P, Negro A, Guidolin D, Skaper SD, Giusti P (2004) Alpha-synuclein and Parkinson’s disease. FASEB J 18(6):617–626.  https://doi.org/10.1096/fj.03-0338rev Google Scholar
  66. Roodveldt C, ALabrador-Garrido A, Lachaud CC, Guilliams T, Fernandez-Montesinos R, Benitez-Rondan A et al (2013) Preconditioning of microglia by α-synuclein strongly affects the response induced by toll-like receptor (TLR) stimulation. PLoS ONE 8(11):e79160.  https://doi.org/10.1371/journal.pone.0079160 Google Scholar
  67. Roosen DA, Mark RC (2016) LRRK2 at the interface of autophagosomes, endosomes and lysosomes. Mol Neurodegener 11(1):73.  https://doi.org/10.1186/s13024-016-0140-1 Google Scholar
  68. Sacino AN, Mieu M, Brooks P, Chakrabarty K, Saha H, Khoshbouei TE, Golde, Benoit IG (2017) Proteolysis of α-Synuclein fibrils in the lysosomal pathway limits induction of inclusion pathology. J Neurochem 140(4):662–678.  https://doi.org/10.1111/jnc.13743 Google Scholar
  69. Schapansky J, Nardozzi JD, Felizia F, LaVoie MJ (2014) Membrane recruitment of endogenous LRRK2 precedes its potent regulation of autophagy. Hum Mol Genet 23(16):4201–4214.  https://doi.org/10.1093/hmg/ddu138 Google Scholar
  70. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in lewy bodies. Nature 388(6645):839–840.  https://doi.org/10.1038/42166 Google Scholar
  71. Stefanis L (2012) α-Synuclein in Parkinson’s disease. Cold Spring Harbor Perspect Med 2(2):a009399.  https://doi.org/10.1101/cshperspect.a009399 Google Scholar
  72. Stefanova N, Fellner L, Reindl M, Masliah E, Poewe W, Gregor KW (2011) Toll-like receptor 4 promotes α-Synuclein clearance and survival of nigral dopaminergic neurons. Am J Pathol 179(2):954–963.  https://doi.org/10.1016/j.ajpath.2011.04.013 Google Scholar
  73. Steger M, Tonelli F, Ito G, Davies P, Trost M, Vetter M, Wachter S et al (2016) Phosphoproteomics reveals that Parkinson’s disease kinase LRRK2 regulates a subset of Rab GTPases. ELife.  https://doi.org/10.7554/eLife.12813 Google Scholar
  74. Steger M, Diez F, Dhekne HS, Lis P, Nirujogi RS, Karayel O, Tonelli F et al (2017) Systematic proteomic analysis of LRRK2-mediated Rab GTPase phosphorylation establishes a connection to ciliogenesis. ELife.  https://doi.org/10.7554/eLife.31012 Google Scholar
  75. Ugolino J, Fang S, Kubisch C, Mervyn JM (2011) Mutant Atp13a2 proteins involved in Parkinsonism are degraded by ER-associated degradation and sensitize cells to ER-stress induced cell death. Hum Mol Genet 20(18):3565–3577.  https://doi.org/10.1093/hmg/ddr274 Google Scholar
  76. Usenovic M, Tresse E, Mazzulli JR, Taylor JP, Krainc D (2012) Deficiency of ATP13A2 leads to lysosomal dysfunction, α-Synuclein accumulation, and neurotoxicity. J Neurosci 32(12):4240–4246.  https://doi.org/10.1523/JNEUROSCI.5575-11.2012 Google Scholar
  77. Wake H, Fields RD (2011) Physiological function of microglia. Neuron Glia Biol 7(1):1–3.  https://doi.org/10.1017/S1740925X12000166 Google Scholar
  78. Waschbüsch D, Michels H, Strassheim S, Ossendorf E, Kessler D, Gloeckner CJ, Barnekow A (2014) LRRK2 transport is regulated by its novel interacting partner Rab32. PLoS ONE 9(10):e111632.  https://doi.org/10.1371/journal.pone.0111632 Google Scholar
  79. Yu M, Arshad M, Wang W, Zhao D, Xu L, Zhou L (2018) LRRK2 mediated Rab8a phosphorylation promotes lipid storage. Lipids Health Dis 17(1):34.  https://doi.org/10.1186/s12944-018-0684-x Google Scholar
  80. Zhang W, Dallas S, Zhang D, Guo J-P, Pang H, Wilson B, Miller DS et al (2007) Microglial PHOX and Mac-1 are essential to the enhanced dopaminergic neurodegeneration elicited by A30P and A53T Mutant Alpha-synuclein. Glia 55(11):1178–1188.  https://doi.org/10.1002/glia.20532 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Biology and Genetic Unit, Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
  2. 2.Genetics UnitIRCCS Istituto Centro S. Giovanni di Dio, FatebenefratelliBresciaItaly

Personalised recommendations