Advertisement

Cellular and Molecular Neurobiology

, Volume 39, Issue 2, pp 321–328 | Cite as

The Effect of MPP+ on the Viability of Primary Cortical Astrocytes Isolated from Female and Male Wistar Rats of Different Ages

  • Adriana Alarcón-Aguilar
  • Armando Luna-López
  • Norma Edith López-Diazguerrero
  • Mina KönigsbergEmail author
Brief Communication
  • 114 Downloads

Abstract

Although age is known to be the main risk for developing chronic and neurodegenerative diseases, those illnesses have a different prevalence depending on the sex. It has been questioned whether genetic and hormonal differences are preserved in primary cultures from individuals of different genders. Therefore, here we studied the susceptibility of astrocytes, obtained from female and male Wistar rats of different ages (newborn, 9 and 24 months-old), to the well-known toxin MPP+ after 2 weeks in vitro, at different concentrations and exposure times. Our results showed that there are no variances due to gender, but that there are important differences associated to age in terms of the viability against this toxin.

Keywords

Astrocytes Rats Sex Gender Age MPP+ 

Notes

Acknowledgements

The authors thank Dr. Wilhelmina Sudarsky for English editing. This work was supported by CONACyT grant FON.INST/298/2016.

Author Contributions

Alarcón-Aguilar A and Luna-López A performed the experiments and statistics. López-Diazguerrero NE, Alarcón-Aguilar A and Konigsberg M designed the experiments, analyzed the data, and wrote the paper.

Compliance with Ethical Standards

Conflict of interest

The authors have no conflicts of interest to disclose.

References

  1. Alarcón-Aguilar A, Luna-López A, Ventura-Gallegos JL, Lazzarini R, Galván-Arzate S, González-Puertos VY, Morán J, Santamaría A, Konigsberg M (2014) Primary cultured astrocytes from old rats are capable to activate the Nrf2 response against MPP + toxicity after tBHQ pre-treatment. Neurobiol Aging 35(8):1901–1912.  https://doi.org/10.1016/j.neurobiolaging.2014.01.143 CrossRefGoogle Scholar
  2. Astiz M, Acaz-Fonseca E, Garcia-Segura LM (2014) Sex differences and effects of estrogenic compounds on the expression of inflammatory molecules by astrocytes exposed to the insecticide dimethoate. Neurotox Res 25(3):271–285.  https://doi.org/10.1007/s12640-013-9417-0 CrossRefGoogle Scholar
  3. Austad SN, Fischer KE (2016) Sex differences in lifespan. Cell Metab 23:1022–1033.  https://doi.org/10.1016/j.cmet.2016.05.019 CrossRefGoogle Scholar
  4. Chisholm NC, Sohrabji F (2016) Astrocytic response to cerebral ischemia is influenced by sex differences and impaired by aging. Neurobiol Dis 85:245–253.  https://doi.org/10.1016/j.nbd.2015.03.028 CrossRefGoogle Scholar
  5. Choleris E, Galea LAM, Sohrabji F, Frick KM (2018) Sex differences in the brain: implications for behavioral and biomedical research. Neurosci Biobehav Rev 85:126–145.  https://doi.org/10.1016/j.neubiorev.2017.07.005 CrossRefGoogle Scholar
  6. Congdon EE (2018) Sex Differences in Autophagy Contribute to Female Vulnerability in Alzheimer’s Disease. Front Neurosci 12:372.  https://doi.org/10.3389/fnins.2018.00372 CrossRefGoogle Scholar
  7. Engler-Chiurazzi EB, Brown CM, Povroznik JM, Simpkins JW (2017) Estrogens as neuroprotectants: estrogenic actions in the context of cognitive aging and brain injury. Prog Neurobiol 157:188–211.  https://doi.org/10.1016/j.pneurobio.2015.12.008 CrossRefGoogle Scholar
  8. Fischer KE, Hoffman JM, Sloane LB, Gelfond JAL, Soto VY, Richardson AG, Austad SN (2016) A cross-sectional study of male and female C57BL/6Nia mice suggests lifespan and healthspan are not necessarily correlated. Aging 8(10):2370–2391.  https://doi.org/10.18632/aging.101059 CrossRefGoogle Scholar
  9. Huxley VH, Kemp SS, Schramm C, Sieveking S, Bingaman S, Yu Y, Zaniletti I, Stockard K, Wang J (2018) Sex differences influencing micro- and macrovascularendothelial phenotype in vitro. J Physiol 596(17):3929–3949.  https://doi.org/10.1113/JP276048 CrossRefGoogle Scholar
  10. Jaber SM, Bordt EA, Bhatt NM, Lewis DM, Gerecht S, Fiskum G, Polster BM (2018) Sex differences in the mitochondrial bioenergetics of astrocytes but not microglia at a physiologically relevant brain oxygen tension. Neurochem Int 117:82–90.  https://doi.org/10.1016/j.neuint.2017.09.003 CrossRefGoogle Scholar
  11. Johnsen D, Murphy SJ (2011) Isoflurane preconditioning protects astrocytes from oxygen and glucose deprivation independent of innate cell sex. J Neurosurg Anesthesiol 23(4):335–340.  https://doi.org/10.1097/ANA.0b013e3182161816 CrossRefGoogle Scholar
  12. Keverne EB (2008) Visualisation of the vomeronasal pheromone response system. Bioessays 30(9):802–805.  https://doi.org/10.1002/bies.20798 CrossRefGoogle Scholar
  13. Lazarus RC, Buonora JE, Jacobowitz DM, Mueller GP (2015) Protein carbonylation after traumatic brain injury: cell specificity, regional susceptibility, and gender differences. Free Radic Biol Med 78:89–100.  https://doi.org/10.1016/j.freeradbiomed.2014.10.507 CrossRefGoogle Scholar
  14. Lin DT, Wu J, Holstein D, Upadhyay G, Rourk W, Muller E, Lechleiter JD (2007) Ca2+ signaling, mitochondria and sensitivity to oxidative stress in aging astrocytes. Neurobiol Aging 28:99–111.  https://doi.org/10.1016/j.neurobiolaging.2005.11.004 CrossRefGoogle Scholar
  15. Liu M, Oyarzabal EA, Yang R, Murphy SJ, Hurn PD (2008) A novel method for assessing sex-specific and genotype-specific response to injury in astrocyte culture. J Neurosci Methods 171(2):214–217.  https://doi.org/10.1016/j.jneumeth.2008.03.002 CrossRefGoogle Scholar
  16. Longoni A, Bellaver B, Bobermin LD, Santos CL, Nonose Y, Kolling J, Dos Santos TM, de Assis AM, Quincozes-Santos A, Wyse ATS (2018) Homocysteine induces glial reactivity in adult rat astrocyte cultures. Mol Neurobiol 55(3):1966–1976.  https://doi.org/10.1007/s12035-017-0463-0 CrossRefGoogle Scholar
  17. López-Diazguerrero NE, López-Araiza H, Conde-Pérezprina JC, Bucio L, Cárdenas MC, Ventura JL, Covarrubias L, Gutiérrez-Ruiz MC, Zentella A, Konigsberg M (2006) Bcl-2 protects against oxidative stress while inducing premature senescence. Free Rad Biol Med 40:1161–1169.  https://doi.org/10.1016/j.freeradbiomed.2005.11.002 CrossRefGoogle Scholar
  18. Mangold CA, Wronowski B, Du M, Masser DR, Hadad N, Bixler GV, Brucklacher RM, Ford MM, Sonntag WE, Freeman WM (2017) Sexually divergent induction of microglialassociated neuroinflammation with hippocampal aging. J Neuroinflamm 14(1):141.  https://doi.org/10.1186/s12974-017-0920-8 CrossRefGoogle Scholar
  19. McCarthy KD, de Vellis (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85(3):890–902.  https://doi.org/10.1083/jcb.85.3.890 CrossRefGoogle Scholar
  20. Miller LR, Marks C, Becker JB, Hurn PD, Chen WJ, Woodruff T, McCarthy MM, Sohrabji F, Schiebinger L, Wetherington CL, Makris S, Arnold AP, Einstein G, Miller VM, Sandberg K, Maier S, Cornelison TL, Clayton JA (2017) Considering sex as a biological variable in preclinical research. FASEB J 31(1):29–34.  https://doi.org/10.1096/fj.201600781R CrossRefGoogle Scholar
  21. Morrison HW, Filosa JA (2016) Sex differences in astrocyte and microglia responses immediately following middle cerebral artery occlusion in adult mice. Neuroscience 339:85–99.  https://doi.org/10.1016/j.neuroscience.2016.09.047 CrossRefGoogle Scholar
  22. Ober C, Loisel DA, Gilad Y (2008) Sex-specific genetic architecture of human disease. Nat Rev Genet 9(12):911–922.  https://doi.org/10.1038/nrg2415 CrossRefGoogle Scholar
  23. Pfau DR, Hobbs NJ, Breedlove SM, Jordan CL (2016) Sex and laterality differences in medial amygdala neurons and astrocytes of adult mice. J Comp Neurol 524(12):2492–2502.  https://doi.org/10.1002/cne.23964 CrossRefGoogle Scholar
  24. Pike CJ, Carroll JC, Rosario ER, Barron AM (2009) Protective actions of sex steroid hormones in Alzheimer’s disease. Front Neuroendocrinol 30(2):239–258.  https://doi.org/10.1016/j.yfrne.2009.04.015 CrossRefGoogle Scholar
  25. Przedborski S, Vila M (2003) The 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine mouse model: a tool to explore the pathogenesis of Parkinson’s disease. Ann N Y Acad Sci 991:189–198CrossRefGoogle Scholar
  26. Rosario ER, Chang L, Head EH, Stanczyk FZ, Pike CJ (2011) Brain levels of sex steroid hormones in men and women during normal aging and in Alzheimer’s disease. Neurobiol Aging 32(4):604–613.  https://doi.org/10.1016/j.neurobiolaging.2009.04.008 CrossRefGoogle Scholar
  27. Santos RS, de Fatima LA, Frank AP, Carneiro EM, Clegg DJ (2017) The effects of 17 alpha-estradiol to inhibit inflammation in vitro. Biol Sex Differ 8(1):30.  https://doi.org/10.1186/s13293-017-0151-9 CrossRefGoogle Scholar
  28. Santos CL, Roppa PHA, Truccolo P, Fontella FU, Souza DO, Bobermin LD, Quincozes-Santos A (2018) Age-dependent neurochemical remodeling of hypothalamic astrocytes. Mol Neurobiol 55(7):5565–5579.  https://doi.org/10.1007/s12035-017-0786-x CrossRefGoogle Scholar
  29. Schwarz JM, Bilbo SD (2012) Sex, glia, and development: interactions in health and disease. Horm Behav 62:243–253.  https://doi.org/10.1016/j.yhbeh.2012.02.018 CrossRefGoogle Scholar
  30. Seifrtova M, Havelek R, Soukup T, Filipova A, Mokry J, Rezacova M (2013) Mitoxantrone ability to induce premature senescence in human dental pulp stem cells and human dermal fibroblasts. J Physiol Pharmacol 64(2):255–266Google Scholar
  31. Souza DG, Bellaver B, Bobermin LD, Souza DO, Quincozes-Santos A (2016) Anti-aging effects of guanosine in glial cells. Purinergic Signal 12(4):697–706.  https://doi.org/10.1007/s11302-016-9533-4 CrossRefGoogle Scholar
  32. Souza DG, Bellaver B, Terra SR, Guma FCR, Souza DO, Quincozes-Santos A (2017) In vitro adult astrocytes are derived from mature cells and reproduce in vivo redox profile. J Cell Biochem 118(10):3111–3118.  https://doi.org/10.1002/jcb.26028 CrossRefGoogle Scholar
  33. Sundar-Boyalla S, Barbara Victor M, Roemgens A, Beyer C, Arnold S (2011) Sex- and brain region-specific role of cytochrome c oxidase in 1-methyl-4-phenylpyridinium-mediated astrocyte vulnerability. J Neurosci Res 89(12):2068–2082.  https://doi.org/10.1002/jnr.22669 CrossRefGoogle Scholar
  34. Valentino RJ, Bangasser DA (2016) Sex-biased cellular signaling: molecular basis for sex differences in neuropsychiatric diseases. Dialog Clin Neurosci 18(4):385–393Google Scholar
  35. Villa A, Gelosa P, Castiglioni L, Cimino M, Rizzi N, Pepe G, Lolli F, Marcello E, Sironi L, Vegeto E, Maggi A (2018) Sex-specific features of microglia from adult mice. Cell Rep 23(12):3501–3511.  https://doi.org/10.1016/j.celrep.2018.05.048 CrossRefGoogle Scholar
  36. Zhang D, Hu X, Qian L, O’Callaghan JP, Hong JS (2010) Astrogliosis in CNS is there a role for microglia? Mol Neurobiol 41:232–241CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
corrected publication 2019

Authors and Affiliations

  • Adriana Alarcón-Aguilar
    • 1
  • Armando Luna-López
    • 2
  • Norma Edith López-Diazguerrero
    • 1
  • Mina Königsberg
    • 1
    • 3
    Email author
  1. 1.Departamento de Ciencias de la SaludUniversidad Autónoma Metropolitana-IztapalapaCiudad de MéxicoMexico
  2. 2.Instituto Nacional de Geriatría, SSACiudad de MéxicoMexico
  3. 3.División de Ciencias Biológicas y de la Salud, Departamento de Ciencias de la SaludUniversidad Autónoma Metropolitana-IztapalapaCiudad de MéxicoMexico

Personalised recommendations