Advertisement

Cellular and Molecular Neurobiology

, Volume 39, Issue 1, pp 1–10 | Cite as

Research Advances of Germinal Matrix Hemorrhage: An Update Review

  • Jinqi Luo
  • Yujie Luo
  • Hanhai Zeng
  • Cesar Reis
  • Sheng ChenEmail author
Review Paper
  • 88 Downloads

Abstract

Germinal matrix hemorrhage (GMH) refers to bleeding that derives from the subependymal (or periventricular) germinal region of the premature brain. GMH can induce severe and irreversible damage attributing to the vulnerable structure of germinal matrix and deleterious circumstances. Molecular mechanisms remain obscure so far. In this review, we summarized the newest preclinical discoveries recent years about GMH to distill a deeper understanding of the neuropathology, and then discuss the potential diagnostic or therapeutic targets among these pathways. GMH studies mostly in recent 5 years were sorted out and the authors generalized the newest discoveries and ideas into four parts of this essay. Intrinsic fragile structure of preterm germinal matrix is the fundamental cause leading to GMH. Many molecules have been found effective in the pathophysiological courses. Some of these molecules like minocycline are suggested active to reduce the damage in animal GMH model. However, researchers are still trying to find efficient diagnostic methods and remedies that are available in preterm infants to rehabilitate or cure the sequent injury. Merits have been obtained in the last several years on molecular pathways of GMH, but more work is required to further unravel the whole pathophysiology.

Keywords

Germinal matrix hemorrhage Preterm infant Neuropathology 

Notes

Author Contributions

SC was the principal investigator. JL and YL wrote the paper and made the original figures. HZ revised the figures. CR handled the language and made some comments.

Funding

This study was supported by the National Natural Science Foundation of China (81500992), Natural Science Foundation of Zhejiang (LQ16H090002), and Medical and Health Key Project of Zhejiang Province (2016RCA015).

Compliance with Ethical Standards

Conflict of interest

The authors declare there is no conflict of interest.

References

  1. Ahn SY, Chang YS, Sung DK, Sung SI, Yoo HS, Lee JH, Oh WI, Park WS (2013) Mesenchymal stem cells prevent hydrocephalus after severe intraventricular hemorrhage. Stroke 44(2):497–504.  https://doi.org/10.1161/STROKEAHA.112.679092 Google Scholar
  2. Albertsson AM, Bi D, Duan L, Zhang X, Leavenworth JW, Qiao L, Zhu C, Cardell S, Cantor H, Hagberg H, Mallard C, Wang X (2014) The immune response after hypoxia-ischemia in a mouse model of preterm brain injury. J Neuroinflammation 11:153.  https://doi.org/10.1186/s12974-014-0153-z Google Scholar
  3. Albertsson AM, Zhang X, Vontell R, Bi D, Bronson RT, Supramaniam V, Baburamani AA, Hua S, Nazmi A, Cardell S, Zhu C, Cantor H, Mallard C, Hagberg H, Leavenworth JW, Wang X (2018) Gammadelta T cells contribute to injury in the developing brain. Am J Pathol 188(3):757–767.  https://doi.org/10.1016/j.ajpath.2017.11.012 Google Scholar
  4. Andreone BJ, Lacoste B, Gu C (2015) Neuronal and vascular interactions. Annu Rev Neurosci 38:25–46.  https://doi.org/10.1146/annurev-neuro-071714-033835 Google Scholar
  5. Baburamani AA, Ek CJ, Walker DW, Castillo-Melendez M (2012) Vulnerability of the developing brain to hypoxic-ischemic damage: contribution of the cerebral vasculature to injury and repair? Front Physiol 3:424.  https://doi.org/10.3389/fphys.2012.00424 Google Scholar
  6. Back SA (2017) White matter injury in the preterm infant: pathology and mechanisms. Acta Neuropathol 134(3):331–349.  https://doi.org/10.1007/s00401-017-1718-6 Google Scholar
  7. Bae DK, Park D, Lee SH, Yang G, Kyung J, Kim D, Shin K, Choi EK, Kim G, Hong JT, Kim SU, Kim YB (2016) Comparative effects of human neural stem cells and oligodendrocyte progenitor cells on the neurobehavioral disorders of experimental autoimmune encephalomyelitis mice. Stem Cells Int 2016:4079863.  https://doi.org/10.1155/2016/4079863
  8. Ballabh P (2014) Pathogenesis and prevention of intraventricular hemorrhage. Clin Perinatol 41(1):47–67.  https://doi.org/10.1016/j.clp.2013.09.007 Google Scholar
  9. Blaho VA, Galvani S, Engelbrecht E, Liu C, Swendeman SL, Kono M, Proia RL, Steinman L, Han MH, Hla T (2015) HDL-bound sphingosine-1-phosphate restrains lymphopoiesis and neuroinflammation. Nature 523(7560):342–346.  https://doi.org/10.1038/nature14462 Google Scholar
  10. Bonsack F, Alleyne CH Jr, Sukumari-Ramesh S (2017) Resveratrol attenuates neurodegeneration and improves neurological outcomes after intracerebral hemorrhage in mice. Front Cell Neurosci 11:228.  https://doi.org/10.3389/fncel.2017.00228 Google Scholar
  11. Brew N, Walker D, Wong FY (2014) Cerebral vascular regulation and brain injury in preterm infants. Am J Physiol Regul Integr Comp Physiol 306(11):R773–R786.  https://doi.org/10.1152/ajpregu.00487.2013 Google Scholar
  12. Chen Q, Shi X, Tan Q, Feng Z, Wang Y, Yuan Q, Tao Y, Zhang J, Tan L, Zhu G, Feng H, Chen Z (2017) Simvastatin promotes hematoma absorption and reduces hydrocephalus following intraventricular hemorrhage in part by upregulating CD36. Transl Stroke Res 8(4):362–373.  https://doi.org/10.1007/s12975-017-0521-y Google Scholar
  13. Cheng Y, Xi G, Jin H, Keep RF, Feng J, Hua Y (2014) Thrombin-induced cerebral hemorrhage: role of protease-activated receptor-1. Transl Stroke Res 5(4):472–475.  https://doi.org/10.1007/s12975-013-0288-8 Google Scholar
  14. Cisternas P, Vio CP, Inestrosa NC (2014) Role of Wnt signaling in tissue fibrosis, lessons from skeletal muscle and kidney. Curr Mol Med 14(4):510–522Google Scholar
  15. Coen RW (2013) Preventing germinal matrix layer rupture and intraventricular hemorrhage. Front Pediatr 1:22.  https://doi.org/10.3389/fped.2013.00022 Google Scholar
  16. de Bijl-Marcus KA, Brouwer AJ, de Vries LS, van Wezel-Meijler G (2017) The effect of head positioning and head tilting on the incidence of intraventricular hemorrhage in very preterm infants: a systematic review. Neonatology 111(3):267–279.  https://doi.org/10.1159/000449240 Google Scholar
  17. Ding H, Zhang H, Ding H, Li D, Yi X, Ma X, Li R, Huang M, Ju X (2017) Transplantation of placenta-derived mesenchymal stem cells reduces hypoxic-ischemic brain damage in rats by ameliorating the inflammatory response. Cell Mol Immunol 14(8):693–701.  https://doi.org/10.1038/cmi.2015.99 Google Scholar
  18. Dohare P, Zia MT, Ahmed E, Ahmed A, Yadala V, Schober AL, Ortega JA, Kayton R, Ungvari Z, Mongin AA, Ballabh P (2016) AMPA-kainate receptor inhibition promotes neurologic recovery in premature rabbits with intraventricular hemorrhage. J Neurosci 36(11):3363–3377.  https://doi.org/10.1523/JNEUROSCI.4329-15.2016 Google Scholar
  19. Doyle KP, Quach LN, Sole M, Axtell RC, Nguyen TV, Soler-Llavina GJ, Jurado S, Han J, Steinman L, Longo FM, Schneider JA, Malenka RC, Buckwalter MS (2015) B-lymphocyte-mediated delayed cognitive impairment following stroke. J Neurosci 35(5):2133–2145.  https://doi.org/10.1523/JNEUROSCI.4098-14.2015 Google Scholar
  20. Duan X, Wen Z, Shen H, Shen M, Chen G (2016) Intracerebral hemorrhage, oxidative stress, and antioxidant therapy. Oxid Med Cell Longev 2016:1203285.  https://doi.org/10.1155/2016/1203285 Google Scholar
  21. Dzietko M, Derugin N, Wendland MF, Vexler ZS, Ferriero DM (2013) Delayed VEGF treatment enhances angiogenesis and recovery after neonatal focal rodent stroke. Transl Stroke Res 4(2):189–200.  https://doi.org/10.1007/s12975-012-0221-6 Google Scholar
  22. Eckermann JM, Krafft PR, Shoemaker L, Lieberson RE, Chang SD, Colohan A (2012) Potential application of hydrogen in traumatic and surgical brain injury, stroke and neonatal hypoxia-ischemia. Med Gas Res 2(1):11.  https://doi.org/10.1186/2045-9912-2-11 Google Scholar
  23. Esiaba I, Angeles DM, Holden MS, Tan JB, Asmerom Y, Gollin G, Boskovic DS (2016) Urinary allantoin is elevated in severe intraventricular hemorrhage in the preterm newborn. Transl Stroke Res 7(2):97–102.  https://doi.org/10.1007/s12975-015-0405-y Google Scholar
  24. Firozan B, Goudarzi I, Elahdadi Salmani M, Lashkarbolouki T, Rezaei A, Abrari K (2014) Estradiol increases expression of the brain-derived neurotrophic factor after acute administration of ethanol in the neonatal rat cerebellum. Eur J Pharmacol 732:1–11.  https://doi.org/10.1016/j.ejphar.2014.02.041 Google Scholar
  25. Flores JJ, Klebe D, Rolland WB, Lekic T, Krafft PR, Zhang JH (2016) PPARgamma-induced upregulation of CD36 enhances hematoma resolution and attenuates long-term neurological deficits after germinal matrix hemorrhage in neonatal rats. Neurobiol Dis 87:124–133.  https://doi.org/10.1016/j.nbd.2015.12.015 Google Scholar
  26. Gao C, Du H, Hua Y, Keep RF, Strahle J, Xi G (2014) Role of red blood cell lysis and iron in hydrocephalus after intraventricular hemorrhage. J Cereb Blood Flow Metab 34(6):1070–1075.  https://doi.org/10.1038/jcbfm.2014.56 Google Scholar
  27. Gao J, Sun QL, Zhang YM, Li YY, Li H, Hou X, Yu BL, Zhou XH, Yang J (2015) Semi-quantitative assessment of brain maturation by conventional magnetic resonance imaging in neonates with clinically mild hypoxic-ischemic encephalopathy. Chin Med J 128(5):574–580.  https://doi.org/10.4103/0366-6999.151646 Google Scholar
  28. Garton T, Keep RF, Wilkinson DA, Strahle JM, Hua Y, Garton HJ, Xi G (2016) Intraventricular hemorrhage: the role of blood components in secondary injury and hydrocephalus. Transl Stroke Res 7(6):447–451.  https://doi.org/10.1007/s12975-016-0480-8 Google Scholar
  29. Guo J, Chen Q, Tang J, Zhang J, Tao Y, Li L, Zhu G, Feng H, Chen Z (2015) Minocycline-induced attenuation of iron overload and brain injury after experimental germinal matrix hemorrhage. Brain Res 1594:115–124.  https://doi.org/10.1016/j.brainres.2014.10.046 Google Scholar
  30. Haines KM, Wang W, Pierson CR (2013) Cerebellar hemorrhagic injury in premature infants occurs during a vulnerable developmental period and is associated with wider neuropathology. Acta Neuropathol Commun 1:69.  https://doi.org/10.1186/2051-5960-1-69 Google Scholar
  31. Hefti MM, Trachtenberg FL, Haynes RL, Hassett C, Volpe JJ, Kinney HC (2016) A century of germinal matrix intraventricular hemorrhage in autopsied premature infants: a historical account. Pediatr Dev Pathol 19(2):108–114.  https://doi.org/10.2350/15-06-1663-OA.1 Google Scholar
  32. Hinojosa-Rodriguez M, Harmony T, Carrillo-Prado C, Van Horn JD, Irimia A, Torgerson C, Jacokes Z (2017) Clinical neuroimaging in the preterm infant: diagnosis and prognosis. Neuroimage Clin 16:355–368.  https://doi.org/10.1016/j.nicl.2017.08.015 Google Scholar
  33. Hu X, Tao C, Gan Q, Zheng J, Li H, You C (2016) Oxidative stress in intracerebral hemorrhage: sources, mechanisms, and therapeutic targets. Oxid Med Cell Longev 2016:3215391.  https://doi.org/10.1155/2016/3215391
  34. Huang H, Vasung L (2014) Gaining insight of fetal brain development with diffusion MRI and histology. Int J Dev Neurosci 32:11–22.  https://doi.org/10.1016/j.ijdevneu.2013.06.005 Google Scholar
  35. Itsiakos G, Papathanasiou AE, Kyriakidis I, Karagianni P, Tsepis K, Tzimou I, Lazaridou E, Chatziioannidis I (2016) Intraventricular hemorrhage and platelet indices in extremely premature neonates. J Pediatr Hematol Oncol 38(7):533–538.  https://doi.org/10.1097/MPH.0000000000000631 Google Scholar
  36. Iyer KK, Roberts JA, Hellstrom-Westas L, Wikstrom S, Hansen Pupp I, Ley D, Breakspear M, Vanhatalo S (2015) Early detection of preterm intraventricular hemorrhage from clinical electroencephalography. Crit Care Med 43(10):2219–2227.  https://doi.org/10.1097/CCM.0000000000001190 Google Scholar
  37. Jiang B, Li L, Chen Q, Tao Y, Yang L, Zhang B, Zhang JH, Feng H, Chen Z, Tang J, Zhu G (2017) Role of glibenclamide in brain injury after intracerebral hemorrhage. Transl Stroke Res 8(2):183–193.  https://doi.org/10.1007/s12975-016-0506-2 Google Scholar
  38. Kaur N, Chettiar S, Rathod S, Rath P, Muzumdar D, Shaikh ML, Shiras A (2013) Wnt3a mediated activation of Wnt/beta-catenin signaling promotes tumor progression in glioblastoma. Mol Cell Neurosci 54:44–57.  https://doi.org/10.1016/j.mcn.2013.01.001 Google Scholar
  39. Klebe D, Krafft PR, Hoffmann C, Lekic T, Flores JJ, Rolland W, Zhang JH (2014) Acute and delayed deferoxamine treatment attenuates long-term sequelae after germinal matrix hemorrhage in neonatal rats. Stroke 45(8):2475–2479.  https://doi.org/10.1161/STROKEAHA.114.005079 Google Scholar
  40. Klebe D, McBride D, Flores JJ, Zhang JH, Tang J (2015) Modulating the immune response towards a neuroregenerative peri-injury milieu after cerebral hemorrhage. J Neuroimmune Pharmacol 10(4):576–586.  https://doi.org/10.1007/s11481-015-9613-1 Google Scholar
  41. Kuperman AA, Brenner B, Kenet G (2013) Intraventricular hemorrhage in preterm infants and coagulation–ambivalent perspectives? Thromb Res 131 Suppl 1:S35–S38.  https://doi.org/10.1016/S0049-3848(13)70018-5
  42. Laptook AR (2013) Neurologic and metabolic issues in moderately preterm, late preterm, and early term infants. Clin Perinatol 40(4):723–738.  https://doi.org/10.1016/j.clp.2013.07.005 Google Scholar
  43. Lee W, Al-Dossary H, Raybaud C, Young JM, Morgan BR, Whyte HE, Sled JG, Taylor MJ, Shroff MM (2016) Longitudinal cerebellar growth following very preterm birth. J Magn Reson Imaging 43(6):1462–1473.  https://doi.org/10.1002/jmri.25098 Google Scholar
  44. Lekic T, Klebe D, McBride DW, Manaenko A, Rolland WB, Flores JJ, Altay O, Tang J, Zhang JH (2015a) Protease-activated receptor 1 and 4 signal inhibition reduces preterm neonatal hemorrhagic brain injury. Stroke 46(6):1710–1713.  https://doi.org/10.1161/STROKEAHA.114.007889 Google Scholar
  45. Lekic T, Klebe D, Poblete R, Krafft PR, Rolland WB, Tang J, Zhang JH (2015b) Neonatal brain hemorrhage (NBH) of prematurity: translational mechanisms of the vascular-neural network. Curr Med Chem 22(10):1214–1238Google Scholar
  46. Li J, McDonald CA, Fahey MC, Jenkin G, Miller SL (2014) Could cord blood cell therapy reduce preterm brain injury? Front Neurol 5:200.  https://doi.org/10.3389/fneur.2014.00200 Google Scholar
  47. Li L, Tao Y, Tang J, Chen Q, Yang Y, Feng Z, Chen Y, Yang L, Yang Y, Zhu G, Feng H, Chen Z (2015) A cannabinoid receptor 2 agonist prevents thrombin-induced blood–brain barrier damage via the inhibition of microglial activation and matrix metalloproteinase expression in rats. Transl Stroke Res 6(6):467–477.  https://doi.org/10.1007/s12975-015-0425-7 Google Scholar
  48. Ma S, Santhosh D, Kumar TP, Huang Z (2017) A brain-region-specific neural pathway regulating germinal matrix angiogenesis. Dev Cell 41(4):366–381 e364.  https://doi.org/10.1016/j.devcel.2017.04.014 Google Scholar
  49. Meng H, Li F, Hu R, Yuan Y, Gong G, Hu S, Feng H (2015) Deferoxamine alleviates chronic hydrocephalus after intraventricular hemorrhage through iron chelation and Wnt1/Wnt3a inhibition. Brain Res 1602:44–52.  https://doi.org/10.1016/j.brainres.2014.08.039 Google Scholar
  50. Ment LR, Aden U, Lin A, Kwon SH, Choi M, Hallman M, Lifton RP, Zhang H, Bauer CR, Gene Targets for IVHSG (2014) Gene–environment interactions in severe intraventricular hemorrhage of preterm neonates. Pediatr Res 75(1–2):241–250.  https://doi.org/10.1038/pr.2013.195 Google Scholar
  51. Michinaga S, Koyama Y (2015) Pathogenesis of brain edema and investigation into anti-edema drugs. Int J Mol Sci 16(5):9949–9975.  https://doi.org/10.3390/ijms16059949 Google Scholar
  52. Mitsiakos G, Papathanasiou AE, Kyriakidis I, Karagianni P, Tsepis K, Tzimou I, Lazaridou E, Chatziioannidis I (2016) Intraventricular hemorrhage and platelet indices in extremely premature neonates. J Pediatr Hematol Oncol 38(7):533–538.  https://doi.org/10.1097/MPH.0000000000000631 Google Scholar
  53. Movsas TZ, Pinto-Martin JA, Whitaker AH, Feldman JF, Lorenz JM, Korzeniewski SJ, Levy SE, Paneth N (2013) Autism spectrum disorder is associated with ventricular enlargement in a low birth weight population. J Pediatr 163(1):73–78.  https://doi.org/10.1016/j.jpeds.2012.12.084 Google Scholar
  54. Nazmi A, Albertsson AM, Rocha-Ferreira E, Zhang X, Vontell R, Zelco A, Rutherford M, Zhu C, Nilsson G, Mallard C, Hagberg H, Lai JCY, Leavenworth JW, Wang X (2018) Lymphocytes contribute to the pathophysiology of neonatal brain injury. Front Neurol 9:159.  https://doi.org/10.3389/fneur.2018.00159 Google Scholar
  55. O’Dell MC, Cassady C, Logsdon G, Varich L (2015) Cinegraphic versus combined static and cinegraphic imaging for initial cranial ultrasound screening in premature infants. Pediatr Radiol 45(11):1706–1711.  https://doi.org/10.1007/s00247-015-3382-0 Google Scholar
  56. Okazaki M, Fukuhara T, Namba Y (2013) Delayed germinal matrix hemorrhage induced by ventriculoperitoneal shunt insertion for congenital hydrocephalus. J Neurosurg Pediatr 12(1):67–70.  https://doi.org/10.3171/2013.4.PEDS12599 Google Scholar
  57. Panigrahy A, Wisnowski JL, Furtado A, Lepore N, Paquette L, Bluml S (2012) Neuroimaging biomarkers of preterm brain injury: toward developing the preterm connectome. Pediatr Radiol 42(Suppl 1):S33–S61.  https://doi.org/10.1007/s00247-011-2239-4 Google Scholar
  58. Parodi A, Morana G, Severino MS, Malova M, Natalizia AR, Sannia A, Rossi A, Ramenghi LA (2015) Low-grade intraventricular hemorrhage: is ultrasound good enough? J Matern Fetal Neonatal Med 28(Suppl 1): 2261–2264.  https://doi.org/10.3109/14767058.2013.796162 Google Scholar
  59. Payne AH, Hintz SR, Hibbs AM, Walsh MC, Vohr BR, Bann CM, Wilson-Costello DE, Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network (2013) Neurodevelopmental outcomes of extremely low-gestational-age neonates with low-grade periventricular-intraventricular hemorrhage. JAMA Pediatr 167(5):451–459.  https://doi.org/10.1001/jamapediatrics.2013.866 Google Scholar
  60. Phillips AW, Johnston MV, Fatemi A (2013) The potential for cell-based therapy in perinatal brain injuries. Transl Stroke Res 4(2):137–148.  https://doi.org/10.1007/s12975-013-0254-5 Google Scholar
  61. Raybaud C, Ahmad T, Rastegar N, Shroff M, Al Nassar M (2013) The premature brain: developmental and lesional anatomy. Neuroradiology 55(Suppl 2):23–40.  https://doi.org/10.1007/s00234-013-1231-0 Google Scholar
  62. Sanapo L, Whitehead MT, Bulas DI, Ahmadzia HK, Pesacreta L, Chang T, du Plessis A (2017) Fetal intracranial hemorrhage: role of fetal MRI. Prenatal Diagn 37(8):827–836.  https://doi.org/10.1002/pd.5096 Google Scholar
  63. Sheehan JW, Pritchard M, Heyne RJ, Brown LS, Jaleel MA, Engle WD, Burchfield PJ, Brion LP (2017) Severe intraventricular hemorrhage and withdrawal of support in preterm infants. J Perinatol 37(4):441–447.  https://doi.org/10.1038/jp.2016.233 Google Scholar
  64. Shigemoto-Mogami Y, Hoshikawa K, Goldman JE, Sekino Y, Sato K (2014) Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. J Neurosci 34(6):2231–2243.  https://doi.org/10.1523/JNEUROSCI.1619-13.2014 Google Scholar
  65. Strahle JM, Garton T, Bazzi AA, Kilaru H, Garton HJ, Maher CO, Muraszko KM, Keep RF, Xi G (2014) Role of hemoglobin and iron in hydrocephalus after neonatal intraventricular hemorrhage. Neurosurgery 75(6):696–705.  https://doi.org/10.1227/NEU.0000000000000524 discussion 706.Google Scholar
  66. Supramaniam V, Vontell R, Srinivasan L, Wyatt-Ashmead J, Hagberg H, Rutherford M (2013) Microglia activation in the extremely preterm human brain. Pediatr Res 73(3):301–309.  https://doi.org/10.1038/pr.2012.186 Google Scholar
  67. Szpecht D, Gadzinowski J, Seremak-Mrozikiewicz A, Kurzawinska G, Drews K, Szymankiewicz M (2017a) The role of FV 1691G> A, FII 20210G> A mutations and MTHFR 677C> T; 1298A> C and 103G> T FXIII gene polymorphisms in pathogenesis of intraventricular hemorrhage in infants born before 32 weeks of gestation. Child’s Nerv Syst.  https://doi.org/10.1007/s00381-017-3460-8 Google Scholar
  68. Szpecht D, Gadzinowski J, Seremak-Mrozikiewicz A, Kurzawinska G, Szymankiewicz M (2017b) Role of endothelial nitric oxide synthase and endothelin-1 polymorphism genes with the pathogenesis of intraventricular hemorrhage in preterm infants. Sci Rep 7:42541.  https://doi.org/10.1038/srep42541 Google Scholar
  69. Tai D, Wells K, Arcaroli J, Vanderbilt C, Aisner DL, Messersmith WA, Lieu CH (2015) Targeting the WNT signaling pathway in cancer therapeutics. Oncologist 20(10):1189–1198.  https://doi.org/10.1634/theoncologist.2015-0057 Google Scholar
  70. Tang J, Tao Y, Tan L, Yang L, Niu Y, Chen Q, Yang Y, Feng H, Chen Z, Zhu G (2015) Cannabinoid receptor 2 attenuates microglial accumulation and brain injury following germinal matrix hemorrhage via ERK dephosphorylation in vivo and in vitro. Neuropharmacology 95:424–433.  https://doi.org/10.1016/j.neuropharm.2015.04.028 Google Scholar
  71. Tang J, Miao H, Jiang B, Chen Q, Tan L, Tao Y, Zhang J, Gao F, Feng H, Zhu G, Chen Z (2017) A selective CB2R agonist (JWH133) restores neuronal circuit after germinal matrix hemorrhage in the preterm via CX3CR1+ microglia. Neuropharmacology 119:157–169.  https://doi.org/10.1016/j.neuropharm.2017.01.027 Google Scholar
  72. Tao Y, Tang J, Chen Q, Guo J, Li L, Yang L, Feng H, Zhu G, Chen Z (2015) Cannabinoid CB2 receptor stimulation attenuates brain edema and neurological deficits in a germinal matrix hemorrhage rat model. Brain Res 1602:127–135.  https://doi.org/10.1016/j.brainres.2015.01.025 Google Scholar
  73. Tortora D, Severino M, Malova M, Parodi A, Morana G, Sedlacik J, Govaert P, Volpe JJ, Rossi A, Ramenghi LA (2017) Differences in subependymal vein anatomy may predispose preterm infants to GMH-IVH. Arch Dis Childhood Fetal Neonatal Ed.  https://doi.org/10.1136/archdischild-2017-312710 Google Scholar
  74. Tsai HC, Han MH (2016) Sphingosine-1-phosphate (S1P) and S1P signaling pathway: therapeutic targets in autoimmunity and inflammation. Drugs 76(11):1067–1079.  https://doi.org/10.1007/s40265-016-0603-2 Google Scholar
  75. Varghese B, Xavier R, Manoj VC, Aneesh MK, Priya PS, Kumar A, Sreenivasan VK (2016) Magnetic resonance imaging spectrum of perinatal hypoxic-ischemic brain injury. Indian J Radiol Imaging 26(3):316–327.  https://doi.org/10.4103/0971-3026.190421 Google Scholar
  76. Vela D (2018) Hepcidin, an emerging and important player in brain iron homeostasis. J Transl Med 16(1):25.  https://doi.org/10.1186/s12967-018-1399-5 Google Scholar
  77. Vesoulis ZA, Mathur AM (2017) Cerebral autoregulation, brain injury, and the transitioning premature infant. Front Pediatr 5:64.  https://doi.org/10.3389/fped.2017.00064 Google Scholar
  78. Waitz M, Nusser S, Schmid MB, Dreyhaupt J, Reister F, Hummler H (2016) Risk factors associated with intraventricular hemorrhage in preterm infants with </=28 weeks gestational age. Klin Padiatr 228(5):245–250.  https://doi.org/10.1055/s-0042-111689 Google Scholar
  79. Wan S, Cheng Y, Jin H, Guo D, Hua Y, Keep RF, Xi G (2016) Microglia activation and polarization after intracerebral hemorrhage in mice: the role of protease-activated receptor-1. Transl Stroke Res 7(6):478–487.  https://doi.org/10.1007/s12975-016-0472-8 Google Scholar
  80. Wang Z, Zhou F, Dou Y, Tian X, Liu C, Li H, Shen H, Chen G (2018) Melatonin alleviates intracerebral hemorrhage-induced secondary brain injury in rats via suppressing apoptosis, inflammation, oxidative stress, DNA damage, and mitochondria injury. Transl Stroke Res 9(1):74–91.  https://doi.org/10.1007/s12975-017-0559-x Google Scholar
  81. Xiaoyu W (2015) The exposure to nicotine affects expression of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in neonate rats. Neurol Sci 36(2):289–295.  https://doi.org/10.1007/s10072-014-1934-y Google Scholar
  82. Xiong XY, Liu L, Wang FX, Yang YR, Hao JW, Wang PF, Zhong Q, Zhou K, Xiong A, Zhu WY, Zhao T, Meng ZY, Wang YC, Gong QW, Liao MF, Wang J, Yang QW (2016) Toll-like receptor 4/MyD88-mediated signaling of hepcidin expression causing brain iron accumulation, oxidative injury, and cognitive impairment after intracerebral hemorrhage. Circulation 134(14):1025–1038.  https://doi.org/10.1161/CIRCULATIONAHA.116.021881 Google Scholar
  83. Yang D, Baumann JM, Sun YY, Tang M, Dunn RS, Akeson AL, Kernie SG, Kallapur S, Lindquist DM, Huang EJ, Potter SS, Liang HC, Kuan CY (2013) Overexpression of vascular endothelial growth factor in the germinal matrix induces neurovascular proteases and intraventricular hemorrhage. Sci Transl Med 5(193):193ra190.  https://doi.org/10.1126/scitranslmed.3005794 Google Scholar
  84. Zhan J, Dinov ID, Li J, Zhang Z, Hobel S, Shi Y, Lin X, Zamanyan A, Feng L, Teng G, Fang F, Tang Y, Zang F, Toga AW, Liu S (2013) Spatial-temporal atlas of human fetal brain development during the early second trimester. Neuroimage 82:115–126.  https://doi.org/10.1016/j.neuroimage.2013.05.063 Google Scholar
  85. Zhang X, Rocha-Ferreira E, Li T, Vontell R, Jabin D, Hua S, Zhou K, Nazmi A, Albertsson AM, Sobotka K, Ek J, Thornton C, Hagberg H, Mallard C, Leavenworth JW, Zhu C, Wang X (2017) gammadeltaT cells but not alphabetaT cells contribute to sepsis-induced white matter injury and motor abnormalities in mice. J Neuroinflamm 14(1):255.  https://doi.org/10.1186/s12974-017-1029-9 Google Scholar
  86. Zhang Y, Xu N, Ding Y, Zhang Y, Li Q, Flores J, Haghighiabyaneh M, Doycheva D, Tang J, Zhang JH (2018) Chemerin suppresses neuroinflammation and improves neurological recovery via CaMKK2/AMPK/Nrf2 pathway after germinal matrix hemorrhage in neonatal rats. Brain Behav Immunity 70:179–193.  https://doi.org/10.1016/j.bbi.2018.02.015 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jinqi Luo
    • 1
  • Yujie Luo
    • 1
  • Hanhai Zeng
    • 2
  • Cesar Reis
    • 3
  • Sheng Chen
    • 1
    • 4
    Email author
  1. 1.Department of Neurosurgery, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
  2. 2.Department of Neurological Surgery, The Children’s HospitalZhejiang University School of MedicineHangzhouChina
  3. 3.Department of Physiology and PharmacologyLoma Linda UniversityLoma LindaUSA
  4. 4.Department of Neurosurgery, Taizhou HospitalWenzhou Medical UniversityLinhaiChina

Personalised recommendations