Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Rheological characterization and modeling of cellulose nanocrystal and TEMPO-oxidized cellulose nanofibril suspensions

Abstract

The production capacity of cellulose nanomaterials (CNM) is limited in part due to lacking standardized, rapid and reliable characterization methods for quality control. In this study, we demonstrate the potential of using rheology as a tool to address this challenge by developing detailed test protocols and a rheological model combining power law and the Cross model: \(\eta = a\dot{\gamma }^{ - b} + \eta_{\infty } + \frac{{\eta_{0} - \eta_{\infty } }}{{1 + \left( {\lambda \dot{\gamma }} \right)^{m} }}\), where \(\dot{\gamma }\) is the shear rate and \(\eta\) is the viscosity. The test protocols, including sample preparation and viscosity measurement procedures, ensure obtaining robust and accurate data. The model, which combines the power law and the Cross model, describes the flow curves over the full range of shear rates across concentrations for both cellulose nanocrystals and TEMPO-oxidized cellulose nanofibrils. The model parameterizes the viscosity data for quick comparisons of different flow curves using all data rather than selectively using viscosity values at specific shear rates. Key model parameters correlate well with the suspension concentrations. We show that this model can be used to estimate the concentration of an uncharacterized CNM sample, and to estimate the salt concentration in a sample. Both applications are relevant to quality control.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Ball R, McLeish T (1989) Dynamic dilution and the viscosity of star-polymer melts. Macromolecules 22:1911–1913

  2. Beck S, Bouchard J (2016) Ionic strength control of sulfated cellulose nanocrystal suspension viscosity. Tappi J 15:363–372

  3. Bercea M, Navard P (2000) Shear dynamics of aqueous suspensions of cellulose whiskers. Macromolecules 33:6011–6016

  4. Bertsch P, Isabettini S, Fischer P (2017) Ion-induced hydrogel formation and nematic ordering of nanocrystalline cellulose suspensions. Biomacromol 18:4060–4066

  5. Boluk Y, Lahiji R, Zhao L, McDermott MT (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surf A 377:297–303

  6. Buffa JM, Casado U, Mucci V, Aranguren MI (2019) Cellulose nanocrystals in aqueous suspensions: rheology of lyotropic chiral liquid crystals. Cellulose 26:2317–2332

  7. Chang H, Luo J, Bakhtiary Davijani AA, Chien A-T, Wang P-H, Liu HC, Kumar S (2016) Individually dispersed wood-based cellulose nanocrystals. ACS Appl Mater Interfaces 8:5768–5771

  8. Cross MM (1965) Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. J Colloid Interface Sci 20:417–437

  9. Crowther HM, Saunders BR, Mears SJ, Cosgrove T, Vincent B, King SM, Yu G-E (1999) Poly (NIPAM) microgel particle de-swelling: a light scattering and small-angle neutron scattering study. Colloids Surf A 152:327–333

  10. CSA (2017) Cellulose nanomaterials—test methods for characterization (CAN/CSA-Z5100-17)

  11. Davis CS et al (2015) NIST-TAPPI workshop on measurement needs for cellulose nanomaterials. NIST Special Publ 1192. https://doi.org/10.6028/NIST.SP.1192

  12. Dealy JM, Saucier PC (2000) Rheology in plastics quality control. Hanser Publishers Ohio, München

  13. Dealy JM, Read DJ, Larson RG (2018) Structure and rheology of molten polymers: from structure to flow behavior and back again. Carl Hanser Verlag GmbH Co KG

  14. Dimic-Misic K, Gane PAC, Paltakari J (2013) Micro- and nanofibrillated cellulose as a rheology modifier additive in CMC-containing pigment-coating formulations. Ind Eng Chem Res 52:16066–16083

  15. Foster EJ et al (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47:2609–2679

  16. Geng L, Peng X, Zhan C, Naderi A, Sharma PR, Mao Y, Hsiao BS (2017) Structure characterization of cellulose nanofiber hydrogel as functions of concentration and ionic strength. Cellulose 24:5417–5429

  17. Geng L et al (2018) Understanding the mechanistic behavior of highly charged cellulose nanofibers in aqueous systems. Macromolecules 51:1498–1506

  18. Gicquel E, Bras J, Rey C, Putaux J-L, Pignon F, Jean B, Martin C (2019) Impact of sonication on the rheological and colloidal properties of highly concentrated cellulose nanocrystal suspensions. Cellulose 26:7619–7634

  19. Hansen F, Brun V, Keller E, Nieh W, Theodore Wegner MM, Lisa Friedersdorf (2014) Cellulose Nanomaterials—a path towards commercialization workshop report. U.S. Department of Agriculture (USDA) and National Nanotechnology Initiative (NNI), Washington D.C., USA

  20. Haywood AD, Weigandt KM, Saha P, Noor M, Green MJ, Davis VA (2017) New insights into the flow and microstructural relaxation behavior of biphasic cellulose nanocrystal dispersions from RheoSANS. Soft Matter 13:8451–8462

  21. Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106:2817–2824

  22. Hule RA, Nagarkar RP, Altunbas A, Ramay HR, Branco MC, Schneider JP, Pochan DJ (2008) Correlations between structure, material properties and bioproperties in self-assembled β-hairpin peptide hydrogels. Faraday Discuss 139:251–264

  23. Iotti M, Gregersen ØW, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19:137–145

  24. Jakubek ZJ et al (2018) Characterization challenges for a cellulose nanocrystal reference material: dispersion and particle size distributions. J Nanopart Res 20:98

  25. Lenfant G, Heuzey M, van de Ven T, Carreau P (2015) Intrinsic viscosity of suspensions of electrosterically stabilized nanocrystals of cellulose. Cellulose 22:1109–1122

  26. Li M-C, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustain Chem Eng 3:821–832

  27. Lindström T (2017) Aspects on nanofibrillated cellulose (NFC) processing, rheology and NFC-film properties. Curr Opin Colloid Interface Sci 29:68–75

  28. Liu Y, Gordeyeva K, Bergström L (2017) Steady-shear and viscoelastic properties of cellulose nanofibril–nanoclay dispersions. Cellulose 24:1815–1824

  29. Lu A, Hemraz U, Khalili Z, Boluk Y (2014) Unique viscoelastic behaviors of colloidal nanocrystalline cellulose aqueous suspensions. Cellulose 21:1239–1250

  30. Luo J, Semenikhin N, Chang H, Moon RJ, Kumar S (2018) Post-sulfonation of cellulose nanofibrils with a one-step reaction to improve dispersibility. Carbohydr Polym 181:247–255

  31. Maestri C et al (2017) Role of sonication pre-treatment and cation valence in the sol-gel transition of nano-cellulose suspensions. Sci Rep 7:11129

  32. Martoïa F, Perge C, Dumont P, Orgéas L, Fardin M, Manneville S, Belgacem M (2015) Heterogeneous flow kinematics of cellulose nanofibril suspensions under shear. Soft Matter 11:4742–4755

  33. Mattos BD, Tardy BL, Rojas OJ (2019) Accounting for substrate interactions in the measurement of cellulose nanofibrils dimensions. Biomacromol 20:2657–2665

  34. Mendoza L, Gunawardhana T, Batchelor W, Garnier G (2018) Effects of fibre dimension and charge density on nanocellulose gels. J Colloid Interface Sci 525:119–125

  35. Mezger TG (2006) The rheology handbook: for users of rotational and oscillatory rheometers. Vincentz Network GmbH & Co KG, Hannover

  36. Moberg T et al (2017) Rheological properties of nanocellulose suspensions: effects of fibril/particle dimensions and surface characteristics. Cellulose 24:2499–2510

  37. Mohtaschemi M, Dimic-Misic K, Puisto A, Korhonen M, Maloney T, Paltakari J, Alava MJ (2014) Rheological characterization of fibrillated cellulose suspensions via bucket vane viscometer. Cellulose 21:1305–1312

  38. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

  39. Moon RJ, Schueneman GT, Simonsen J (2016) Overview of cellulose nanomaterials, their capabilities and applications. JOM 68:2383–2394

  40. Mourtas S, Haikou M, Theodoropoulou M, Tsakiroglou C, Antimisiaris SG (2008) The effect of added liposomes on the rheological properties of a hydrogel: a systematic study. J Colloid Interface Sci 317:611–619

  41. Nazari B, Kumar V, Bousfield DW, Toivakka M (2016) Rheology of cellulose nanofibers suspensions: boundary driven flow. J Rheol 60:1151–1159

  42. Nechyporchuk O, Belgacem MN, Pignon F (2014) Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena. Carbohydr Polym 112:432–439

  43. Nechyporchuk O, Belgacem MN, Pignon F (2015) Concentration effect of TEMPO-oxidized nanofibrillated cellulose aqueous suspensions on the flow instabilities and small-angle X-ray scattering structural characterization. Cellulose 22:2197–2210

  44. Pääkkö M et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941

  45. Pillai K, Arzate FN, Zhang W, Renneckar S (2014) Towards biomimicking wood: fabricated free-standing films of nanocellulose, lignin, and a synthetic polycation. JoVE J Vis Exp 88:e51257

  46. Sato J, Breedveld V (2005) Evaporation blocker for cone-plate rheometry of volatile samples. Appl Rheol 15:390–397

  47. Schenker M, Schoelkopf J, Gane P, Mangin P (2018) Influence of shear rheometer measurement systems on the rheological properties of microfibrillated cellulose (MFC) suspensions. Cellulose 25:961–976

  48. Šebenik U, Krajnc M, Alič B, Lapasin R (2019) Ageing of aqueous TEMPO-oxidized nanofibrillated cellulose dispersions: a rheological study. Cellulose 26:917–931

  49. Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2012) Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir 28:17124–17133

  50. Shafiei-Sabet S, Hamad W, Hatzikiriakos S (2014) Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions. Cellulose 21:3347–3359

  51. Tanaka R, Saito T, Hondo H, Isogai A (2015) Influence of flexibility and dimensions of nanocelluloses on the flow properties of their aqueous dispersions. Biomacromol 16:2127–2131

  52. Tanaka R, Saito T, Hänninen T, Ono Y, Hakalahti M, Tammelin T, Isogai A (2016) Viscoelastic properties of core–shell-structured, hemicellulose-rich nanofibrillated cellulose in dispersion and wet-film states. Biomacromol 17:2104–2111

  53. Ureña-Benavides EE, Ao G, Davis VA, Kitchens CL (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44:8990–8998

  54. Vadodaria SS, Onyianta AJ, Sun D (2018) High-shear rate rheometry of micro-nanofibrillated cellulose (CMF/CNF) suspensions using rotational rheometer. Cellulose 25:5535–5552

  55. Walker L, Wagner N (1994) Rheology of region I flow in a lyotropic liquid-crystal polymer: the effects of defect texture. J Rheol 38:1525–1547

  56. Wang R et al (2019) Morphology and flow behavior of cellulose nanofibers dispersed in glycols. Macromolecules 52:5499–5509

  57. Xu Y, Atrens AD, Stokes JR (2017) Rheology and microstructure of aqueous suspensions of nanocrystalline cellulose rods. J Colloid Interface Sci 496:130–140

  58. Xu Y, Atrens AD, Stokes JR (2018) “Liquid, Gel and Soft Glass” phase transitions and rheology of nanocrystalline cellulose suspensions as a function of concentration and salinity. Soft Matter 14:1953–1963

  59. Zhou Y, Saito T, Bergström L, Isogai A (2018) Acid-free preparation of cellulose nanocrystals by TEMPO oxidation and subsequent cavitation. Biomacromol 19:633–639

Download references

Acknowledgments

The authors thank the Renewable Bioproducts Institute (RBI) at Georgia Tech for Fellowship support for J.L. J.L would like to thank Jeffrey Luo and Nikolay Semenikhin for helping with TEMPO-CNF reactions and SEM imaging, and Chinmay Satam for assistance with homogenizing the TEMPO-CNF.

Author information

Correspondence to Victor Breedveld.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1681 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liao, J., Pham, K.A. & Breedveld, V. Rheological characterization and modeling of cellulose nanocrystal and TEMPO-oxidized cellulose nanofibril suspensions. Cellulose (2020). https://doi.org/10.1007/s10570-020-03048-2

Download citation

Keywords

  • Flow curve
  • Model
  • Cellulose nanocrystal
  • Cellulose nanofibril
  • Viscosity