Advertisement

Cellulose

pp 1–13 | Cite as

Conversion of recalcitrant cellulose to alkyl levulinates and levulinic acid via oxidation pretreatment combined with alcoholysis over Al2(SO4)3

  • Lipeng Zhou
  • Dongting Gao
  • Jingru Yang
  • Xiaomei Yang
  • Yunlai Su
  • Tianliang LuEmail author
Original Research
  • 2 Downloads

Abstract

Conversion of cellulose to chemicals is an economic and environmental route for biomass utilization. In this work, efficient conversion of cellulose to alkyl levulinates and levulinic acid was realized by oxidation pretreatment combined with alcoholysis over Al2(SO4)3 catalyst. Proper pre-oxidation conditions including oxidation temperature and time are important. By pre-oxidation, part of hydroxymethyl groups on cellulose was converted to carboxyl groups which provide the Brønsted acid sites near the glycosidic bonds to improve the depolymerization of cellulose to monosaccharide. Al2(SO4)3·18H2O can play both Brønsted and Lewis acid roles in methanol and catalyze the conversion of monosaccharide to alkyl levulinates and levulinic acid. After pre-oxidation at optimized conditions, cellulose can be converted into methyl levulinate and levulinic acid over Al2(SO4)3 in methanol efficiently, and total yield of methyl levulinate and levulinic acid can reach 66.8% at 180 °C for 3 h. Furthermore, the simple and cheap Al2(SO4)3 catalyst is recyclable which is important for the practical application.

Graphic abstract

Keywords

Cellulose Alkyl levulinate Levulinic acid Oxidation Al2(SO4)3 

Notes

Acknowledgments

We acknowledge the National Natural Science Foundation of China (21875222, 21503192, 21802125) and the Natural Science Foundation of Henan Province (182300410122).

Compliance with ethical standards

Conflcit of interest

All authors declare that they have no conflcit of interest.

Supplementary material

10570_2019_2903_MOESM1_ESM.doc (436 kb)
Supplementary material 1 (DOC 436 kb)

References

  1. Ahmad E, Alam MI, Pant KK, Haider MA (2016) Catalytic and mechanistic insights into the production of ethyl levulinate from biorenewable feedstocks. Green Chem 18:4804–4823CrossRefGoogle Scholar
  2. Akin O, Yuksel A (2019) Novel hybrid process for the conversion of microcrystalline cellulose to value-added chemicals: part 3: detailed reaction pathway. Cellulose 26:2999–3008CrossRefGoogle Scholar
  3. Babaei Z, Chermahini AN, Dinari M (2018) Alumina-coated mesoporous silica SBA-15 as a solid catalyst for catalytic conversion of fructose into liquid biofuel candidate ethyl levulinate. Chem Eng J 352:45–52CrossRefGoogle Scholar
  4. Chatterjee C, Pong F, Sen A (2015) Chemical conversion pathways for carbohydrates. Green Chem 17:40–71CrossRefGoogle Scholar
  5. Chen Z, Ma X, Xu L, Wang Y, Long J (2018) Catalytic conversion of duckweed to methyl levulinate in the presence of acidic ionic liquids. Bioresour Technol 268:488–495PubMedCrossRefGoogle Scholar
  6. Dai J, Peng L, Li H (2018) Intensified ethyl levulinate production from cellulose using a combination of low loading H2SO4 and Al(OTf)3. Catal Commun 103:116–119CrossRefGoogle Scholar
  7. Démolis A, Eternot M, Essayem N, Rataboul F (2016) Influence of butanol isomers on the reactivity of cellulose towards the synthesis of butyl levulinates catalyzed by liquid and solid acid catalysts. New J Chem 40:3747–3754CrossRefGoogle Scholar
  8. Deng L, Chang C, An R, Qi X, Xu G (2017) Metal sulfates-catalyzed butanolysis of cellulose: butyl levulinate production and optimization. Cellulose 24:5403–5415CrossRefGoogle Scholar
  9. Ding D, Xi J, Wang J, Liu X, Lu G, Wang Y (2015) Production of methyl levulinate from cellulose: selectivity and mechanism study. Green Chem 17:4037–4044CrossRefGoogle Scholar
  10. French AD, Cintrón MS (2013) Cellulose polymorphy, crystallite size, and the segal crystallinity index. Cellulose 20:583–588CrossRefGoogle Scholar
  11. Hu H, Bhowmik P, Zhao B, Hamon MA, Itkis ME, Haddon RC (2001) Determination of the acidic sites of purified single-walled carbon nanotubes by acid–base titration. Chem Phys Lett 345:25–28CrossRefGoogle Scholar
  12. Huang YB, Yang T, Lin YT, Zhu YZ, Li LC, Pan H (2018) Facile and high-yield synthesis of methyl levulinate from cellulose. Green Chem 20:1323–1334CrossRefGoogle Scholar
  13. Jiang L, Zhou L, Chao J, Zhao H, Lu T, Su Y, Yang X, Xu J (2018) Direct catalytic conversion of carbohydrates to methyl levulinate: synergy of solid Brønsted acid and Lewis acid. Appl Catal B Environ 220:589–596CrossRefGoogle Scholar
  14. Kang S, Yu J (2015) Effect of methanol on formation of levulinates from cellulosic biomass. Ind Eng Chem Res 54:11552–11559CrossRefGoogle Scholar
  15. Khan AS, Man Z, Bustam MA, Kait CF, Nasrullah A, Ullah Z, Sarwono A, Ahamd P, Muhammad N (2018a) Dicationic ionic liquids as sustainable approach for direct conversion of cellulose to levulinic acid. J Clean Prod 170:591–600CrossRefGoogle Scholar
  16. Khan AS, Man Z, Bustam MA, Nasrullah A, Ullah Z, Sarwono A, Shah FU, Muhammad N (2018b) Efficient conversion of lignocellulosic biomass to levulinic acid using acidic ionic liquids. Carbohydr Polym 181:208–214PubMedCrossRefGoogle Scholar
  17. Li H, Fang Z, Luo J, Yang S (2017) Direct conversion of biomass components to the biofuel methyllevulinate catalyzed by acid-base bifunctional zirconia-zeolites. Appl Catal B Environ 200:182–191CrossRefGoogle Scholar
  18. Li S, Deng W, Wang S, Wang P, An D, Li Y, Zhang Q, Wang Y (2018) Catalytic transformation of cellulose and its derivatives into functionalized organic acids. Chemsuschem 11:1995–2028PubMedCrossRefGoogle Scholar
  19. Liu L, Li Z, Hou W, Shen H (2018) Direct conversion of lignocellulose to levulinic acid catalyzed by ionic liquid. Carbohydr Polym 181:778–784PubMedCrossRefGoogle Scholar
  20. Morales G, Osatiashtiani A, Hernández B, Iglesias J, Melero JA, Paniagua M, Brown DR, Granollers M, Lee AF, Wilson K (2014) Conformal sulfated zirconia monolayer catalysts for the one-pot synthesis of ethyl levulinate from glucose. Chem Commun 50:11742–11745CrossRefGoogle Scholar
  21. Peng L, Lin L, Li H, Yang Q (2011) Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts. Appl Energy 88:4590–4596CrossRefGoogle Scholar
  22. Podrojková N, Oriňak A, Oriňaková R, Procházková L, Čuba V, Patera J, Smith RM (2018) Effect of different crystalline phase of ZnO/Cu nanocatalysts on cellulose pyrolysis conversion to specific chemical compounds. Cellulose 25:5623–5642CrossRefGoogle Scholar
  23. Proniewicz LM, Paluszkiewicz C, Weselucha-Birczyńska A, Majcherczyk H, Barański A, Konieczna A (2001) FT-IR and FT-Raman study of hydrothermally degradated cellulose. J Mol Struct 596:163–169CrossRefGoogle Scholar
  24. Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691PubMedCrossRefGoogle Scholar
  25. Saravanamurugan S, Riisager A (2013) Zeolite catalyzed transformation of carbohydrates to alkyl levulinates. ChemCatChem 5:1754–1757CrossRefGoogle Scholar
  26. Shakouri Z, Nazockdast H (2018) Microstructural development and mechanical performance of PLA/TPU blends containing geometrically different cellulose nanocrystals. Cellulose 25:7167–7188CrossRefGoogle Scholar
  27. Shi X-L, Hu Q, Chen Y, Wang F, Duan P (2018) Conversion of biomass components to methyl levulinate over an ultra-high performance fiber catalyst in impellers of the agitation system. J Ind Eng Chem 65:264–271CrossRefGoogle Scholar
  28. Song C, Liu S, Peng X, Long J, Lou W, Li X (2016) Catalytic conversion of carbohydrates to levulinate ester over heteropolyanion-based ionic liquids. Chemsuschem 9:1–11CrossRefGoogle Scholar
  29. Tiong YW, Yap CL, Gan S, Yap WSP (2017) One-pot conversion of oil palm empty fruit bunch and mesocarp fiber biomass to levulinic acid and upgrading to ethyl levulinate via indium trichloride-ionic liquids. J Cleaner Prod 168:1251–1261CrossRefGoogle Scholar
  30. Tominaga K, Mori A, Fukushima Y, Shimada S, Sato K (2011) Mixed-acid systems for the catalytic synthesis of methyl levulinate from cellulose. Green Chem 13:810–812CrossRefGoogle Scholar
  31. Tominaga K, Nemoto K, Kamimura Y, Yamada A, Yamamoto Y, Sato K (2016) A practical and efficient synthesis of methyl levulinate from cellulosic biomass catalyzed by an aluminum-based mixed acid catalyst system. RSC Adv 6:65119–65124CrossRefGoogle Scholar
  32. Wang K, Ye J, Zhou M, Liu P, Liang X, Xu J, Jiang J (2017) Selective conversion of cellulose to levulinic acid and furfural in sulfolane/water solvent. Cellulose 24:1383–1394CrossRefGoogle Scholar
  33. Wu X, Fu J, Lu X (2012) One-pot preparation of methyl levulinate from catalytic alcoholysis of cellulose in near-critical methanol. Carbohydr Res 358:37–39PubMedCrossRefGoogle Scholar
  34. Xu X, Zhang X, Zou W, Yue H, Tian G, Feng S (2015) Conversion of carbohydrates to methyl levulinate catalyzed by sulfated montmorillonite. Catal Commun 62:67–70CrossRefGoogle Scholar
  35. Yu F, Zhong R, Chong H, Smet M, Dehaen W, Sels BF (2017) Fast catalytic conversion of recalcitrant cellulose into alkyl levulinates and levulinic acid in the presence of soluble and recoverable sulfonated hyperbranched poly(arylene oxindole)s. Green Chem 19:153–163CrossRefGoogle Scholar
  36. Zhang J, Li J, Tang Y, Lin L, Long M (2015) Advances in catalytic production of bio-based polyester monomer 2,5-furandicarboxylic acid derived from lignocellulosic biomass. Carbohydr Polym 130:420–428PubMedCrossRefGoogle Scholar
  37. Zhang X, Li Y, Xue L, Wang S, Wang X, Jiang Z (2018a) Catalyzing cascade production of methyl levulinate from polysaccharides using heteropolyacids HnPW11MO39 with Brønsted/Lewis acidic sites. ACS Sustain Chem Eng 6:165–176CrossRefGoogle Scholar
  38. Zhang X, Zhang H, Li Y, Bawa M, Wang S, Wang X, Jiang Z (2018b) First triple-functional polyoxometalate Cs10.6[H2.4GeNb13O41] for highly selective production of methyl levulinate directly from cellulose. Cellulose 25:6405–6419CrossRefGoogle Scholar
  39. Zhang Y, Chen X, Lyu X, Zhao G, Zhao T, Han L, Xiao W (2019a) Aluminum phosphotungstate as a promising bifunctional catalyst for biomass carbohydrate transformation to methyl levulinate under mild conditions. J Clean Prod 215:712–720CrossRefGoogle Scholar
  40. Zhang Z, Hu X, Zhang S, Liu Q, Hu S, Xiang J, Wang Y, Lu Y (2019b) Direct conversion of furan into levulinate esters via acid catalysis. Fuel 237:263–275CrossRefGoogle Scholar
  41. Zhou L, Zou H, Nan J, Wu L, Yang X, Su Y, Lu T, Xu J (2014) Conversion of carbohydrate biomass to methyl levulinate with Al2(SO4)3 as a simple, cheap and efficient catalyst. Catal Commun 50:13–16CrossRefGoogle Scholar
  42. Zhou L, Yang X, Xu J, Shi M, Wang F, Chen C, Xu J (2015a) Depolymerization of cellulose to glucose by oxidation-hydrolysis. Green Chem 17:1519–1524CrossRefGoogle Scholar
  43. Zhou L, Zhao H, Cui L, Bai Y, Bian J, Lu T, Su Y, Yang X (2015b) Promotion effect of mesopore on the conversion of carbohydrates to methyl levulinate over H-USY zeolite. Catal Commun 71:74–78CrossRefGoogle Scholar
  44. Zhou L, Zhang S, Li Z, Zhang Z, Liu R, Yun J (2019a) WCl6 catalyzed cellulose degradation at 80 °C and lower in [BMIM]Cl. Carbohydr Polym 212:289–296PubMedCrossRefGoogle Scholar
  45. Zhou S, Yang X, Zhang Y, Jiang L, Zhou L, Lu T, Su Y (2019b) Efficient conversion of cellulose to methyl levulinate over heteropoly acid promoted by Sn-Beta zeolite. Cellulose 26:9135–9147CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.College of ChemistryZhengzhou UniversityZhengzhouPeople’s Republic of China
  2. 2.School of Chemical Engineering and EnergyZhengzhou UniversityZhengzhouPeople’s Republic of China

Personalised recommendations